## Ordered set partitions, Garsia-Procesi modules, and rank varieties

HTML articles powered by AMS MathViewer

- by Sean T. Griffin PDF
- Trans. Amer. Math. Soc.
**374**(2021), 2609-2660 Request permission

## Abstract:

We introduce a family of ideals $I_{n,\lambda , s}$ in $\mathbb {Q}[x_1,\dots , x_n]$ for $\lambda$ a partition of $k\leq n$ and an integer $s \geq \ell (\lambda )$. This family contains both the Tanisaki ideals $I_\lambda$ and the ideals $I_{n,k}$ of Haglund-Rhoades-Shimozono as special cases. We study the corresponding quotient rings $R_{n,\lambda , s}$ as symmetric group modules. When $n=k$ and $s$ is arbitrary, we recover the Garsia-Procesi modules, and when $\lambda =(1^k)$ and $s=k$, we recover the generalized coinvariant algebras of Haglund-Rhoades-Shimozono.

We give a monomial basis for $R_{n,\lambda , s}$ in terms of $(n,\lambda , s)$-staircases, unifying the monomial bases studied by Garsia-Procesi and Haglund-Rhoades-Shimozono. We realize the $S_n$-module structure of $R_{n,\lambda , s}$ in terms of an action on $(n,\lambda , s)$-ordered set partitions. We find a formula for the Hilbert series of $R_{n,\lambda , s}$ in terms of inversion and diagonal inversion statistics on a set of fillings in bijection with $(n,\lambda , s)$-ordered set partitions. Furthermore, we prove an expansion of the graded Frobenius characteristic of our rings into Gessel’s fundamental quasisymmetric basis.

We connect our work with Eisenbud-Saltman rank varieties using results of Weyman. As an application of our results on $R_{n,\lambda , s}$, we give a monomial basis, Hilbert series formula, and graded Frobenius characteristic formula for the coordinate ring of the scheme-theoretic intersection of a rank variety with diagonal matrices.

## References

- Sara Billey and Izzet Coskun,
*Singularities of generalized Richardson varieties*, Comm. Algebra**40**(2012), no. 4, 1466–1495. MR**2912998**, DOI 10.1080/00927872.2011.551903 - Neil Chriss and Victor Ginzburg,
*Representation theory and complex geometry*, Birkhäuser Boston, Inc., Boston, MA, 1997. MR**1433132** - Thomas Church, Jordan S. Ellenberg, and Benson Farb,
*FI-modules and stability for representations of symmetric groups*, Duke Math. J.**164**(2015), no. 9, 1833–1910. MR**3357185**, DOI 10.1215/00127094-3120274 - David Cox, John Little, and Donal O’Shea,
*Ideals, varieties, and algorithms*, 3rd ed., Undergraduate Texts in Mathematics, Springer, New York, 2007. An introduction to computational algebraic geometry and commutative algebra. MR**2290010**, DOI 10.1007/978-0-387-35651-8 - Corrado De Concini and Claudio Procesi,
*Symmetric functions, conjugacy classes and the flag variety*, Invent. Math.**64**(1981), no. 2, 203–219. MR**629470**, DOI 10.1007/BF01389168 - David Eisenbud,
*Commutative algebra*, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR**1322960**, DOI 10.1007/978-1-4612-5350-1 - David Eisenbud and David Saltman,
*Rank varieties of matrices*, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 173–212. MR**1015518**, DOI 10.1007/978-1-4612-3660-3_{9} - Lucas Fresse and Anna Melnikov,
*On the singularity of the irreducible components of a Springer fiber in $\mathfrak {sl}_n$*, Selecta Math. (N.S.)**16**(2010), no. 3, 393–418. MR**2734337**, DOI 10.1007/s00029-010-0025-z - Francis Y. C. Fung,
*On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory*, Adv. Math.**178**(2003), no. 2, 244–276. MR**1994220**, DOI 10.1016/S0001-8708(02)00072-5 - A. M. Garsia and C. Procesi,
*On certain graded $S_n$-modules and the $q$-Kostka polynomials*, Adv. Math.**94**(1992), no. 1, 82–138. MR**1168926**, DOI 10.1016/0001-8708(92)90034-I - Ira M. Gessel,
*Multipartite $P$-partitions and inner products of skew Schur functions*, Combinatorics and algebra (Boulder, Colo., 1983) Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 289–317. MR**777705**, DOI 10.1090/conm/034/777705 - Maria Gillespie and Brendon Rhoades,
*Higher Specht bases for generalizations of the coinvariant ring*, preprint (2020), arXiv:2005.02110. - Sean Griffin,
*Ordered set partitions, Tanisaki ideals, and rank varieties*, Sém. Lothar. Combin.**84B**(2020), Art. 90, 12. MR**4138717** - J. Haglund, M. Haiman, and N. Loehr,
*A combinatorial formula for Macdonald polynomials*, J. Amer. Math. Soc.**18**(2005), no. 3, 735–761. MR**2138143**, DOI 10.1090/S0894-0347-05-00485-6 - J. Haglund, M. Haiman, N. Loehr, J. B. Remmel, and A. Ulyanov,
*A combinatorial formula for the character of the diagonal coinvariants*, Duke Math. J.**126**(2005), no. 2, 195–232. MR**2115257**, DOI 10.1215/S0012-7094-04-12621-1 - J. Haglund, J. B. Remmel, and A. T. Wilson,
*The delta conjecture*, Trans. Amer. Math. Soc.**370**(2018), no. 6, 4029–4057. MR**3811519**, DOI 10.1090/tran/7096 - James Haglund, Brendon Rhoades, and Mark Shimozono,
*Ordered set partitions, generalized coinvariant algebras, and the delta conjecture*, Adv. Math.**329**(2018), 851–915. MR**3783430**, DOI 10.1016/j.aim.2018.01.028 - R. Hotta and T. A. Springer,
*A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups*, Invent. Math.**41**(1977), no. 2, 113–127. MR**486164**, DOI 10.1007/BF01418371 - Bertram Kostant,
*Lie group representations on polynomial rings*, Amer. J. Math.**85**(1963), 327–404. MR**158024**, DOI 10.2307/2373130 - Hanspeter Kraft,
*Conjugacy classes and Weyl group representations*, Young tableaux and Schur functors in algebra and geometry (Toruń, 1980), Astérisque, vol. 87, Soc. Math. France, Paris, 1981, pp. 191–205. MR**646820** - Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon,
*Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties*, J. Math. Phys.**38**(1997), no. 2, 1041–1068. MR**1434225**, DOI 10.1063/1.531807 - I. G. Macdonald,
*Symmetric functions and Hall polynomials*, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR**1354144** - Maria Monks Gillespie,
*A combinatorial approach to the $q,t$-symmetry relation in Macdonald polynomials*, Electron. J. Combin.**23**(2016), no. 2, Paper 2.38, 64. MR**3512660** - Brendan Pawlowski and Brendon Rhoades,
*A flag variety for the delta conjecture*, Trans. Amer. Math. Soc.**372**(2019), no. 11, 8195–8248. MR**4029695**, DOI 10.1090/tran/7918 - Brendon Rhoades and Andrew Timothy Wilson,
*Line configurations and $r$-Stirling partitions*, J. Comb.**10**(2019), no. 3, 411–431. MR**3960509**, DOI 10.4310/JOC.2019.v10.n3.a1 - Brendon Rhoades, Tianyi Yu, and Zehong Zhao,
*Harmonic bases for generalized coinvariant algebras*, preprint (2020), arXiv:2004.00767. - N. Spaltenstein,
*The fixed point set of a unipotent transformation on the flag manifold*, Nederl. Akad. Wetensch. Proc. Ser. A 79=Indag. Math.**38**(1976), no. 5, 452–456. MR**0485901** - T. A. Springer,
*Trigonometric sums, Green functions of finite groups and representations of Weyl groups*, Invent. Math.**36**(1976), 173–207. MR**442103**, DOI 10.1007/BF01390009 - T. A. Springer,
*A construction of representations of Weyl groups*, Invent. Math.**44**(1978), no. 3, 279–293. MR**491988**, DOI 10.1007/BF01403165 - Toshiyuki Tanisaki,
*Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups*, Tohoku Math. J. (2)**34**(1982), no. 4, 575–585. MR**685425**, DOI 10.2748/tmj/1178229158 - Julianna S. Tymoczko,
*Linear conditions imposed on flag varieties*, Amer. J. Math.**128**(2006), no. 6, 1587–1604. MR**2275912** - Julianna Tymoczko,
*The geometry and combinatorics of Springer fibers*, Around Langlands correspondences, Contemp. Math., vol. 691, Amer. Math. Soc., Providence, RI, 2017, pp. 359–376. MR**3666060**, DOI 10.1090/conm/691/13903 - J. A. Vargas,
*Fixed points under the action of unipotent elements of $\textrm {SL}_{n}$ in the flag variety*, Bol. Soc. Mat. Mexicana (2)**24**(1979), no. 1, 1–14. MR**579665** - J. Weyman,
*The equations of conjugacy classes of nilpotent matrices*, Invent. Math.**98**(1989), no. 2, 229–245. MR**1016262**, DOI 10.1007/BF01388851 - Andrew Timothy Wilson,
*An extension of MacMahon’s equidistribution theorem to ordered multiset partitions*, Electron. J. Combin.**23**(2016), no. 1, Paper 1.5, 21. MR**3484710**

## Additional Information

**Sean T. Griffin**- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
- MR Author ID: 1228593
- Email: stgriff@uw.edu
- Received by editor(s): April 3, 2020
- Received by editor(s) in revised form: June 9, 2020
- Published electronically: February 2, 2021
- Additional Notes: The author was supported in part by NSF Grant DMS-1764012.
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**374**(2021), 2609-2660 - MSC (2020): Primary 05E05, 20C30, 05E10; Secondary 05A19, 05A18, 13D40
- DOI: https://doi.org/10.1090/tran/8237
- MathSciNet review: 4223028