Ordered set partitions, Garsia-Procesi modules, and rank varieties
HTML articles powered by AMS MathViewer
- by Sean T. Griffin PDF
- Trans. Amer. Math. Soc. 374 (2021), 2609-2660 Request permission
Abstract:
We introduce a family of ideals $I_{n,\lambda , s}$ in $\mathbb {Q}[x_1,\dots , x_n]$ for $\lambda$ a partition of $k\leq n$ and an integer $s \geq \ell (\lambda )$. This family contains both the Tanisaki ideals $I_\lambda$ and the ideals $I_{n,k}$ of Haglund-Rhoades-Shimozono as special cases. We study the corresponding quotient rings $R_{n,\lambda , s}$ as symmetric group modules. When $n=k$ and $s$ is arbitrary, we recover the Garsia-Procesi modules, and when $\lambda =(1^k)$ and $s=k$, we recover the generalized coinvariant algebras of Haglund-Rhoades-Shimozono.
We give a monomial basis for $R_{n,\lambda , s}$ in terms of $(n,\lambda , s)$-staircases, unifying the monomial bases studied by Garsia-Procesi and Haglund-Rhoades-Shimozono. We realize the $S_n$-module structure of $R_{n,\lambda , s}$ in terms of an action on $(n,\lambda , s)$-ordered set partitions. We find a formula for the Hilbert series of $R_{n,\lambda , s}$ in terms of inversion and diagonal inversion statistics on a set of fillings in bijection with $(n,\lambda , s)$-ordered set partitions. Furthermore, we prove an expansion of the graded Frobenius characteristic of our rings into Gessel’s fundamental quasisymmetric basis.
We connect our work with Eisenbud-Saltman rank varieties using results of Weyman. As an application of our results on $R_{n,\lambda , s}$, we give a monomial basis, Hilbert series formula, and graded Frobenius characteristic formula for the coordinate ring of the scheme-theoretic intersection of a rank variety with diagonal matrices.
References
- Sara Billey and Izzet Coskun, Singularities of generalized Richardson varieties, Comm. Algebra 40 (2012), no. 4, 1466–1495. MR 2912998, DOI 10.1080/00927872.2011.551903
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- Thomas Church, Jordan S. Ellenberg, and Benson Farb, FI-modules and stability for representations of symmetric groups, Duke Math. J. 164 (2015), no. 9, 1833–1910. MR 3357185, DOI 10.1215/00127094-3120274
- David Cox, John Little, and Donal O’Shea, Ideals, varieties, and algorithms, 3rd ed., Undergraduate Texts in Mathematics, Springer, New York, 2007. An introduction to computational algebraic geometry and commutative algebra. MR 2290010, DOI 10.1007/978-0-387-35651-8
- Corrado De Concini and Claudio Procesi, Symmetric functions, conjugacy classes and the flag variety, Invent. Math. 64 (1981), no. 2, 203–219. MR 629470, DOI 10.1007/BF01389168
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- David Eisenbud and David Saltman, Rank varieties of matrices, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 173–212. MR 1015518, DOI 10.1007/978-1-4612-3660-3_{9}
- Lucas Fresse and Anna Melnikov, On the singularity of the irreducible components of a Springer fiber in $\mathfrak {sl}_n$, Selecta Math. (N.S.) 16 (2010), no. 3, 393–418. MR 2734337, DOI 10.1007/s00029-010-0025-z
- Francis Y. C. Fung, On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory, Adv. Math. 178 (2003), no. 2, 244–276. MR 1994220, DOI 10.1016/S0001-8708(02)00072-5
- A. M. Garsia and C. Procesi, On certain graded $S_n$-modules and the $q$-Kostka polynomials, Adv. Math. 94 (1992), no. 1, 82–138. MR 1168926, DOI 10.1016/0001-8708(92)90034-I
- Ira M. Gessel, Multipartite $P$-partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 289–317. MR 777705, DOI 10.1090/conm/034/777705
- Maria Gillespie and Brendon Rhoades, Higher Specht bases for generalizations of the coinvariant ring, preprint (2020), arXiv:2005.02110.
- Sean Griffin, Ordered set partitions, Tanisaki ideals, and rank varieties, Sém. Lothar. Combin. 84B (2020), Art. 90, 12. MR 4138717
- J. Haglund, M. Haiman, and N. Loehr, A combinatorial formula for Macdonald polynomials, J. Amer. Math. Soc. 18 (2005), no. 3, 735–761. MR 2138143, DOI 10.1090/S0894-0347-05-00485-6
- J. Haglund, M. Haiman, N. Loehr, J. B. Remmel, and A. Ulyanov, A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J. 126 (2005), no. 2, 195–232. MR 2115257, DOI 10.1215/S0012-7094-04-12621-1
- J. Haglund, J. B. Remmel, and A. T. Wilson, The delta conjecture, Trans. Amer. Math. Soc. 370 (2018), no. 6, 4029–4057. MR 3811519, DOI 10.1090/tran/7096
- James Haglund, Brendon Rhoades, and Mark Shimozono, Ordered set partitions, generalized coinvariant algebras, and the delta conjecture, Adv. Math. 329 (2018), 851–915. MR 3783430, DOI 10.1016/j.aim.2018.01.028
- R. Hotta and T. A. Springer, A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math. 41 (1977), no. 2, 113–127. MR 486164, DOI 10.1007/BF01418371
- Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404. MR 158024, DOI 10.2307/2373130
- Hanspeter Kraft, Conjugacy classes and Weyl group representations, Young tableaux and Schur functors in algebra and geometry (Toruń, 1980), Astérisque, vol. 87, Soc. Math. France, Paris, 1981, pp. 191–205. MR 646820
- Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon, Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties, J. Math. Phys. 38 (1997), no. 2, 1041–1068. MR 1434225, DOI 10.1063/1.531807
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Maria Monks Gillespie, A combinatorial approach to the $q,t$-symmetry relation in Macdonald polynomials, Electron. J. Combin. 23 (2016), no. 2, Paper 2.38, 64. MR 3512660
- Brendan Pawlowski and Brendon Rhoades, A flag variety for the delta conjecture, Trans. Amer. Math. Soc. 372 (2019), no. 11, 8195–8248. MR 4029695, DOI 10.1090/tran/7918
- Brendon Rhoades and Andrew Timothy Wilson, Line configurations and $r$-Stirling partitions, J. Comb. 10 (2019), no. 3, 411–431. MR 3960509, DOI 10.4310/JOC.2019.v10.n3.a1
- Brendon Rhoades, Tianyi Yu, and Zehong Zhao, Harmonic bases for generalized coinvariant algebras, preprint (2020), arXiv:2004.00767.
- N. Spaltenstein, The fixed point set of a unipotent transformation on the flag manifold, Nederl. Akad. Wetensch. Proc. Ser. A 79=Indag. Math. 38 (1976), no. 5, 452–456. MR 0485901
- T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173–207. MR 442103, DOI 10.1007/BF01390009
- T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), no. 3, 279–293. MR 491988, DOI 10.1007/BF01403165
- Toshiyuki Tanisaki, Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups, Tohoku Math. J. (2) 34 (1982), no. 4, 575–585. MR 685425, DOI 10.2748/tmj/1178229158
- Julianna S. Tymoczko, Linear conditions imposed on flag varieties, Amer. J. Math. 128 (2006), no. 6, 1587–1604. MR 2275912
- Julianna Tymoczko, The geometry and combinatorics of Springer fibers, Around Langlands correspondences, Contemp. Math., vol. 691, Amer. Math. Soc., Providence, RI, 2017, pp. 359–376. MR 3666060, DOI 10.1090/conm/691/13903
- J. A. Vargas, Fixed points under the action of unipotent elements of $\textrm {SL}_{n}$ in the flag variety, Bol. Soc. Mat. Mexicana (2) 24 (1979), no. 1, 1–14. MR 579665
- J. Weyman, The equations of conjugacy classes of nilpotent matrices, Invent. Math. 98 (1989), no. 2, 229–245. MR 1016262, DOI 10.1007/BF01388851
- Andrew Timothy Wilson, An extension of MacMahon’s equidistribution theorem to ordered multiset partitions, Electron. J. Combin. 23 (2016), no. 1, Paper 1.5, 21. MR 3484710
Additional Information
- Sean T. Griffin
- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
- MR Author ID: 1228593
- Email: stgriff@uw.edu
- Received by editor(s): April 3, 2020
- Received by editor(s) in revised form: June 9, 2020
- Published electronically: February 2, 2021
- Additional Notes: The author was supported in part by NSF Grant DMS-1764012.
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 2609-2660
- MSC (2020): Primary 05E05, 20C30, 05E10; Secondary 05A19, 05A18, 13D40
- DOI: https://doi.org/10.1090/tran/8237
- MathSciNet review: 4223028