Shintani theta lifts of harmonic Maass forms
HTML articles powered by AMS MathViewer
- by Claudia Alfes-Neumann and Markus Schwagenscheidt PDF
- Trans. Amer. Math. Soc. 374 (2021), 2297-2339 Request permission
Abstract:
We define a regularized Shintani theta lift which maps weight $2k+2$ ($k \in \mathbb {Z}, k \geq 0$) harmonic Maass forms for congruence subgroups to (sesqui-)harmonic Maass forms of weight $3/2+k$ for the Weil representation of an even lattice of signature $(1,2)$. We show that its Fourier coefficients are given by traces of CM values and regularized cycle integrals of the input harmonic Maass form. Further, the Shintani theta lift is related via the $\xi$-operator to the Millson theta lift studied in our earlier work. We use this connection to construct $\xi$-preimages of Zagier’s weight $1/2$ generating series of singular moduli and of some of Ramanujan’s mock theta functions.References
- Claudia Alfes and Stephan Ehlen, Twisted traces of CM values of weak Maass forms, J. Number Theory 133 (2013), no. 6, 1827–1845. MR 3027941, DOI 10.1016/j.jnt.2012.10.008
- Claudia Alfes, Michael Griffin, Ken Ono, and Larry Rolen, Weierstrass mock modular forms and elliptic curves, Res. Number Theory 1 (2015), Paper No. 24, 31. MR 3501008, DOI 10.1007/s40993-015-0026-2
- Claudia Alfes-Neumann and Markus Schwagenscheidt, On a theta lift related to the Shintani lift, Adv. Math. 328 (2018), 858–889. MR 3771144, DOI 10.1016/j.aim.2018.02.015
- Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR 0167642
- Kathrin Bringmann, Nikolaos Diamantis, and Stephan Ehlen, Regularized inner products and errors of modularity, Int. Math. Res. Not. IMRN 24 (2017), 7420–7458. MR 3801423, DOI 10.1093/imrn/rnw225
- Jan Hendrik Bruinier and Jens Funke, On two geometric theta lifts, Duke Math. J. 125 (2004), no. 1, 45–90. MR 2097357, DOI 10.1215/S0012-7094-04-12513-8
- Jan Hendrik Bruinier and Jens Funke, Traces of CM values of modular functions, J. Reine Angew. Math. 594 (2006), 1–33. MR 2248151, DOI 10.1515/CRELLE.2006.034
- Jan H. Bruinier, Jens Funke, and Özlem Imamoḡlu, Regularized theta liftings and periods of modular functions, J. Reine Angew. Math. 703 (2015), 43–93. MR 3353542, DOI 10.1515/crelle-2013-0035
- Jan H. Bruinier, Jens Funke, Özlem Imamoḡlu, and Yingkun Li, Modularity of generating series of winding numbers, Res. Math. Sci. 5 (2018), no. 2, Paper No. 23, 23. MR 3796415, DOI 10.1007/s40687-018-0140-6
- Kathrin Bringmann, Karl-Heinz Fricke, and Zachary A. Kent, Special $L$-values and periods of weakly holomorphic modular forms, Proc. Amer. Math. Soc. 142 (2014), no. 10, 3425–3439. MR 3238419, DOI 10.1090/S0002-9939-2014-12092-2
- Kathrin Bringmann, Pavel Guerzhoy, and Ben Kane, Shintani lifts and fractional derivatives for harmonic weak Maass forms, Adv. Math. 255 (2014), 641–671. MR 3167495, DOI 10.1016/j.aim.2014.01.015
- Kathrin Bringmann, Pavel Guerzhoy, and Ben Kane, On cycle integrals of weakly holomorphic modular forms, Math. Proc. Cambridge Philos. Soc. 158 (2015), no. 3, 439–449. MR 3335420, DOI 10.1017/S0305004115000055
- Jan Bruinier and Ken Ono, Heegner divisors, $L$-functions and harmonic weak Maass forms, Ann. of Math. (2) 172 (2010), no. 3, 2135–2181. MR 2726107, DOI 10.4007/annals.2010.172.2135
- Richard E. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), no. 3, 491–562. MR 1625724, DOI 10.1007/s002220050232
- Jan H. Bruinier, Borcherds products on O(2, $l$) and Chern classes of Heegner divisors, Lecture Notes in Mathematics, vol. 1780, Springer-Verlag, Berlin, 2002. MR 1903920, DOI 10.1007/b83278
- Jan Hendrik Bruinier and Markus Schwagenscheidt, Algebraic formulas for the coefficients of mock theta functions and Weyl vectors of Borcherds products, J. Algebra 478 (2017), 38–57. MR 3621662, DOI 10.1016/j.jalgebra.2016.12.034
- Barry A. Cipra, On the Niwa-Shintani theta-kernel lifting of modular forms, Nagoya Math. J. 91 (1983), 49–117. MR 716787, DOI 10.1017/S0027763000020468
- Henri Cohen, Sums involving the values at negative integers of $L$-functions of quadratic characters, Math. Ann. 217 (1975), no. 3, 271–285. MR 382192, DOI 10.1007/BF01436180
- Jonathan Crawford, A Singular Theta Lift and the Shimura Correspondence, Ph.D. thesis, Durham University, 2015.
- W. Duke, Ö. Imamoḡlu, and Á. Tóth, Kronecker’s first limit formula, revisited, Res. Math. Sci. 5 (2018), no. 2, Paper No. 20, 21. MR 3782448, DOI 10.1007/s40687-018-0138-0
- Martin Eichler and Don Zagier, The theory of Jacobi forms, Progress in Mathematics, vol. 55, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 781735, DOI 10.1007/978-1-4684-9162-3
- Jens Funke and John Millson, Spectacle cycles with coefficients and modular forms of half-integral weight, Arithmetic geometry and automorphic forms, Adv. Lect. Math. (ALM), vol. 19, Int. Press, Somerville, MA, 2011, pp. 91–154. MR 2906907
- B. Gross, W. Kohnen, and D. Zagier, Heegner points and derivatives of $L$-series. II, Math. Ann. 278 (1987), no. 1-4, 497–562. MR 909238, DOI 10.1007/BF01458081
- Jeffrey A. Harvey and Gregory Moore, Algebras, BPS states, and strings, Nuclear Phys. B 463 (1996), no. 2-3, 315–368. MR 1393643, DOI 10.1016/0550-3213(95)00605-2
- Martin Hövel, Automorphe Formen mit Singularitäten auf dem hyperbolischen Raum, TU Darmstadt Diss., 2012.
- Winfried Kohnen, Modular forms of half-integral weight on $\Gamma _{0}(4)$, Math. Ann. 248 (1980), no. 3, 249–266. MR 575942, DOI 10.1007/BF01420529
- Winfried Kohnen, Newforms of half-integral weight, J. Reine Angew. Math. 333 (1982), 32–72. MR 660784, DOI 10.1515/crll.1982.333.32
- Winfried Kohnen, Fourier coefficients of modular forms of half-integral weight, Math. Ann. 271 (1985), no. 2, 237–268. MR 783554, DOI 10.1007/BF01455989
- Svetlana Katok and Peter Sarnak, Heegner points, cycles and Maass forms, Israel J. Math. 84 (1993), no. 1-2, 193–227. MR 1244668, DOI 10.1007/BF02761700
- Jennifer Kupka, Mock modular morms and traces of singular moduli, TU Darmstadt Master’s thesis, 2017.
- W. Kohnen and D. Zagier, Modular forms with rational periods, Modular forms (Durham, 1983) Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., Horwood, Chichester, 1984, pp. 197–249. MR 803368
- Shinji Niwa, Modular forms of half integral weight and the integral of certain theta-functions, Nagoya Math. J. 56 (1975), 147–161. MR 364106
- Goro Shimura, On modular forms of half integral weight, Ann. of Math. (2) 97 (1973), 440–481. MR 332663, DOI 10.2307/1970831
- Takuro Shintani, On construction of holomorphic cusp forms of half integral weight, Nagoya Math. J. 58 (1975), 83–126. MR 389772
- Nils-Peter Skoruppa and Don Zagier, Jacobi forms and a certain space of modular forms, Invent. Math. 94 (1988), no. 1, 113–146. MR 958592, DOI 10.1007/BF01394347
- Don Zagier, Nombres de classes et formes modulaires de poids $3/2$, C. R. Acad. Sci. Paris Sér. A-B 281 (1975), no. 21, Ai, A883–A886 (French, with English summary). MR 429750
- Don Zagier, Traces of singular moduli, Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998) Int. Press Lect. Ser., vol. 3, Int. Press, Somerville, MA, 2002, pp. 211–244. MR 1977587
- S. P. Zwegers, Mock $\theta$-functions and real analytic modular forms, $q$-series with applications to combinatorics, number theory, and physics (Urbana, IL, 2000) Contemp. Math., vol. 291, Amer. Math. Soc., Providence, RI, 2001, pp. 269–277. MR 1874536, DOI 10.1090/conm/291/04907
Additional Information
- Claudia Alfes-Neumann
- Affiliation: Mathematical Institute, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
- MR Author ID: 899205
- ORCID: 0000-0003-2056-5378
- Email: alfes@math.uni-paderborn.de
- Markus Schwagenscheidt
- Affiliation: Mathematical Institute, University of Cologne, Weyertal 86-90, D-50931 Cologne, Germany
- MR Author ID: 1094068
- Email: mschwage@math.uni-koeln.de
- Received by editor(s): May 25, 2019
- Received by editor(s) in revised form: September 10, 2019
- Published electronically: January 20, 2021
- Additional Notes: The second author was supported by DFG grant BR-2163/4-2.
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 2297-2339
- MSC (2020): Primary 11F03, 11F12, 11F27, 11F37
- DOI: https://doi.org/10.1090/tran/8265
- MathSciNet review: 4223017