Chern-Simons invariant and Deligne-Riemann-Roch isomorphism
Author:
Takashi Ichikawa
Journal:
Trans. Amer. Math. Soc. 374 (2021), 2987-3005
MSC (2020):
Primary 14C40, 58J28; Secondary 14H10, 14H15
DOI:
https://doi.org/10.1090/tran/8320
Published electronically:
February 8, 2021
MathSciNet review:
4223040
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Using the arithmetic Schottky uniformization theory, we show the arithmeticity of $PSL_{2}({\mathbb C})$ Chern-Simons invariant. In terms of this invariant, we give an explicit formula of the Deligne-Riemann-Roch isomorphism as the Zograf-McIntyre-Takhtajan infinite product for families of algebraic curves. Applying this formula to the Liouville theory, we determine the unknown constant which appears in the holomorphic factorization formula of determinants of Laplacians on Riemann surfaces.
- Ettore Aldrovandi, On Hermitian-holomorphic classes related to uniformization, the dilogarithm, and the Liouville action, Comm. Math. Phys. 251 (2004), no. 1, 27–64. MR 2096733, DOI https://doi.org/10.1007/s00220-004-1168-6
- Shiing Shen Chern and James Simons, Characteristic forms and geometric invariants, Ann. of Math. (2) 99 (1974), 48–69. MR 353327, DOI https://doi.org/10.2307/1971013
- P. Deligne, Le déterminant de la cohomologie, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 93–177 (French). MR 902592, DOI https://doi.org/10.1090/conm/067/902592
- P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109. MR 262240
- Daniel S. Freed, Classical Chern-Simons theory. I, Adv. Math. 113 (1995), no. 2, 237–303. MR 1337109, DOI https://doi.org/10.1006/aima.1995.1039
- Gérard Freixas i Montplet, An arithmetic Riemann-Roch theorem for pointed stable curves, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 2, 335–369 (English, with English and French summaries). MR 2518081, DOI https://doi.org/10.24033/asens.2098
- Henri Gillet and Christophe Soulé, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 93–174 (1991). MR 1087394
- Colin Guillarmou and Sergiu Moroianu, Chern-Simons line bundle on Teichmüller space, Geom. Topol. 18 (2014), no. 1, 327–377. MR 3159164, DOI https://doi.org/10.2140/gt.2014.18.327
- Takashi Ichikawa, $p$-adic theta functions and solutions of the KP hierarchy, Comm. Math. Phys. 176 (1996), no. 2, 383–399. MR 1374418
- Takashi Ichikawa, Generalized Tate curve and integral Teichmüller modular forms, Amer. J. Math. 122 (2000), no. 6, 1139–1174. MR 1797659
- T. Ichikawa, An explicit formula of the normalized Mumford form, arXiv:1812.08331.
- Finn F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$, Math. Scand. 52 (1983), no. 2, 161–199. MR 702953, DOI https://doi.org/10.7146/math.scand.a-12001
- Finn Faye Knudsen and David Mumford, The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”, Math. Scand. 39 (1976), no. 1, 19–55. MR 437541, DOI https://doi.org/10.7146/math.scand.a-11642
- A. Kokotov and D. Korotkin, Tau-functions on Hurwitz spaces, Math. Phys. Anal. Geom. 7 (2004), no. 1, 47–96. MR 2053591, DOI https://doi.org/10.1023/B%3AMPAG.0000022835.68838.56
- Aleksey Kokotov and Dmitry Korotkin, Tau-functions on spaces of abelian differentials and higher genus generalizations of Ray-Singer formula, J. Differential Geom. 82 (2009), no. 1, 35–100. MR 2504770
- Yu. Manin and V. Drinfeld, Periods of $p$-adic Schottky groups, J. Reine Angew. Math. 262(263) (1973), 239–247. MR 396582, DOI https://doi.org/10.1142/9789812830517_0012
- Andrew McIntyre and Jinsung Park, Tau function and Chern-Simons invariant, Adv. Math. 262 (2014), 1–58. MR 3228423, DOI https://doi.org/10.1016/j.aim.2014.05.005
- A. McIntyre and L. A. Takhtajan, Holomorphic factorization of determinants of Laplacians on Riemann surfaces and a higher genus generalization of Kronecker’s first limit formula, Geom. Funct. Anal. 16 (2006), no. 6, 1291–1323. MR 2276541, DOI https://doi.org/10.1007/s00039-006-0582-7
- Masanori Morishita and Yuji Terashima, Chern-Simons variation and Deligne cohomology, Spectral analysis in geometry and number theory, Contemp. Math., vol. 484, Amer. Math. Soc., Providence, RI, 2009, pp. 127–134. MR 1500143, DOI https://doi.org/10.1090/conm/484/09470
- David Mumford, An analytic construction of degenerating curves over complete local rings, Compositio Math. 24 (1972), 129–174. MR 352105
- David Mumford, Stability of projective varieties, Enseign. Math. (2) 23 (1977), no. 1-2, 39–110. MR 450272
- D. Kvillen, Determinants of Cauchy-Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen. 19 (1985), no. 1, 37–41, 96 (Russian). MR 783704
- T. R. Ramadas, I. M. Singer, and J. Weitsman, Some comments on Chern-Simons gauge theory, Comm. Math. Phys. 126 (1989), no. 2, 409–420. MR 1027504
- D. B. Ray and I. M. Singer, $R$-torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971), 145–210. MR 295381, DOI https://doi.org/10.1016/0001-8708%2871%2990045-4
- Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR 1312368
- John Tate, A review of non-Archimedean elliptic functions, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 162–184. MR 1363501
- Lin Weng, $\Omega $-admissible theory. II. Deligne pairings over moduli spaces of punctured Riemann surfaces, Math. Ann. 320 (2001), no. 2, 239–283. MR 1839763, DOI https://doi.org/10.1007/PL00004473
- Tomoyoshi Yoshida, The $\eta $-invariant of hyperbolic $3$-manifolds, Invent. Math. 81 (1985), no. 3, 473–514. MR 807069, DOI https://doi.org/10.1007/BF01388583
- P. G. Zograf, Liouville action on moduli spaces and uniformization of degenerate Riemann surfaces, Algebra i Analiz 1 (1989), no. 4, 136–160 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 4, 941–965. MR 1027464
- P. G. Zograf, Determinants of Laplacians, Liouville action, and an analogue of the Dedekind $\eta$-function on Teichmüuller space, Unpublished manuscript (1997).
- P. G. Zograf and L. A. Takhtadzhyan, On the uniformization of Riemann surfaces and on the Weil-Petersson metric on the Teichmüller and Schottky spaces, Mat. Sb. (N.S.) 132(174) (1987), no. 3, 304–321, 444 (Russian); English transl., Math. USSR-Sb. 60 (1988), no. 2, 297–313. MR 889594, DOI https://doi.org/10.1070/SM1988v060n02ABEH003170
Retrieve articles in Transactions of the American Mathematical Society with MSC (2020): 14C40, 58J28, 14H10, 14H15
Retrieve articles in all journals with MSC (2020): 14C40, 58J28, 14H10, 14H15
Additional Information
Takashi Ichikawa
Affiliation:
Department of Mathematics, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
MR Author ID:
253584
Email:
ichikawn@cc.saga-u.ac.jp
Keywords:
Chern-Simons invariant,
Deligne-Riemann-Roch isomorphism,
Liouville action,
moduli space of curves
Received by editor(s):
May 27, 2020
Received by editor(s) in revised form:
September 9, 2020
Published electronically:
February 8, 2021
Article copyright:
© Copyright 2021
American Mathematical Society