Functions with isotropic sections
HTML articles powered by AMS MathViewer
- by Ioannis Purnaras and Christos Saroglou PDF
- Trans. Amer. Math. Soc. 374 (2021), 3007-3024 Request permission
Abstract:
We prove a local version of a recently established theorem by Myroshnychenko, Ryabogin and the second named author. More specifically, we show that if $n\geq 3$, $g:\mathbb {S}^{n-1}\to \mathbb {R}$ is a bounded measurable function, $U$ is an open connected subset of $\mathbb {S}^{n-1}$ and the restriction (section) of $f$ onto any great sphere perpendicular to $U$ is isotropic, then $\mathcal {C}(g)|_U=c+\langle a,\cdot \rangle$ and $\mathcal {R}(g)|_U=c’$, for some fixed constants $c,c’\in \mathbb {R}$ and for some fixed vector $a\in \mathbb {R}^n$. Here, $\mathcal {C}(g)$ denotes the cosine transform and $\mathcal {R}(g)$ denotes the Funk transform of $g$. However, we show that an even $g$ does not need to be equal to a constant almost everywhere in $U^\perp \coloneq \bigcup _{u\in U}(\mathbb {S}^{n-1}\cap u^\perp )$. For the needs of our proofs, we obtain a new generalization of a result from classical differential geometry, in the setting of convex hypersurfaces, that we believe is of independent interest.References
- Dan Amir, Characterizations of inner product spaces, Operator Theory: Advances and Applications, vol. 20, Birkhäuser Verlag, Basel, 1986. MR 897527, DOI 10.1007/978-3-0348-5487-0
- Christian Berg, Corps convexes et potentiels sphériques, Mat.-Fys. Medd. Danske Vid. Selsk. 37 (1969), no. 6, 64 pp. (1969) (French). MR 254789
- Gabriele Bianchi, Richard J. Gardner, and Paolo Gronchi, Symmetrization in geometry, Adv. Math. 306 (2017), 51–88. MR 3581298, DOI 10.1016/j.aim.2016.10.003
- T. Bonnesen and W. Fenchel, Theory of convex bodies, BCS Associates, Moscow, ID, 1987. Translated from the German and edited by L. Boron, C. Christenson and B. Smith. MR 920366
- Manfredo Perdigão do Carmo, Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty. MR 1138207, DOI 10.1007/978-1-4757-2201-7
- Frank Deutsch, Best approximation in inner product spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 7, Springer-Verlag, New York, 2001. MR 1823556, DOI 10.1007/978-1-4684-9298-9
- Richard J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, New York, 2006. MR 2251886, DOI 10.1017/CBO9781107341029
- R. J. Gardner and A. Volčič, Tomography of convex and star bodies, Adv. Math. 108 (1994), no. 2, 367–399. MR 1296519, DOI 10.1006/aima.1994.1075
- H. Groemer, Geometric applications of Fourier series and spherical harmonics, Encyclopedia of Mathematics and its Applications, vol. 61, Cambridge University Press, Cambridge, 1996. MR 1412143, DOI 10.1017/CBO9780511530005
- M. L. Gromov, On a geometric hypothesis of Banach, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 1105–1114 (Russian). MR 0217566
- Sigurđur Helgason, The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds, Acta Math. 113 (1965), 153–180. MR 172311, DOI 10.1007/BF02391776
- Daniel Hug, Absolute continuity for curvature measures of convex sets. I, Math. Nachr. 195 (1998), 139–158. MR 1654685, DOI 10.1002/mana.19981950108
- Daniel Hug, Absolute continuity for curvature measures of convex sets. II, Math. Z. 232 (1999), no. 3, 437–485. MR 1719698, DOI 10.1007/PL00004765
- Daniel Hug, Absolute continuity for curvature measures of convex sets. III, Adv. Math. 169 (2002), no. 1, 92–117. MR 1916372, DOI 10.1006/aima.2001.2055
- Markus Kiderlen, Stability results for convex bodies in geometric tomography, Indiana Univ. Math. J. 57 (2008), no. 5, 1999–2038. MR 2463960, DOI 10.1512/iumj.2008.57.3348
- Erwin Lutwak, On quermassintegrals of mixed projection bodies, Geom. Dedicata 33 (1990), no. 1, 51–58. MR 1042624, DOI 10.1007/BF00147600
- P. Mani, Fields of planar bodies tangent to spheres, Monatsh. Math. 74 (1970), 145–149. MR 259753, DOI 10.1007/BF01299036
- Sergii Myroshnychenko, Dmitry Ryabogin, and Christos Saroglou, Star bodies with completely symmetric sections, Int. Math. Res. Not. IMRN 10 (2019), 3015–3031. MR 3952557, DOI 10.1093/imrn/rnx211
- Fedor Nazarov, Dmitry Ryabogin, and Artem Zvavitch, An asymmetric convex body with maximal sections of constant volume, J. Amer. Math. Soc. 27 (2014), no. 1, 43–68. MR 3110795, DOI 10.1090/S0894-0347-2013-00777-8
- Boris Rubin, Radon transforms and Gegenbauer-Chebyshev integrals, I, Anal. Math. Phys. 7 (2017), no. 2, 117–150. MR 3647191, DOI 10.1007/s13324-016-0133-9
- Dmitry Ryabogin, On the continual Rubik’s cube, Adv. Math. 231 (2012), no. 6, 3429–3444. MR 2980504, DOI 10.1016/j.aim.2012.09.010
- Dmitry Ryabogin, On symmetries of projections and sections of convex bodies, Discrete geometry and symmetry, Springer Proc. Math. Stat., vol. 234, Springer, Cham, 2018, pp. 297–309. MR 3816884, DOI 10.1007/978-3-319-78434-2_{1}7
- Rolf Schneider, Convex bodies with congruent sections, Bull. London Math. Soc. 12 (1980), no. 1, 52–54. MR 565484, DOI 10.1112/blms/12.1.52
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183
- Rabah Souam and Joeri Van der Veken, Totally umbilical hypersurfaces of manifolds admitting a unit Killing field, Trans. Amer. Math. Soc. 364 (2012), no. 7, 3609–3626. MR 2901226, DOI 10.1090/S0002-9947-2012-05472-9
- Michael E. Taylor, Partial differential equations I. Basic theory, 2nd ed., Applied Mathematical Sciences, vol. 115, Springer, New York, 2011. MR 2744150, DOI 10.1007/978-1-4419-7055-8
- Wolfgang Weil, Kontinuierliche Linearkombination von Strecken, Math. Z. 148 (1976), no. 1, 71–84. MR 400052, DOI 10.1007/BF01187872
- T. J. Willmore, Mean value theorems in harmonic Riemannian spaces, J. London Math. Soc. 25 (1950), 54–57. MR 33408, DOI 10.1112/jlms/s1-25.1.54
- Ning Zhang, On bodies with congruent sections or projections, J. Differential Equations 265 (2018), no. 5, 2064–2075. MR 3800112, DOI 10.1016/j.jde.2018.04.025
Additional Information
- Ioannis Purnaras
- Affiliation: Department of Mathematics, University of Ioannina, Ioannina, 45110 Greece
- MR Author ID: 311798
- Email: ipurnara@uoi.gr
- Christos Saroglou
- Affiliation: Department of Mathematics, University of Ioannina, Ioannina, 45110 Greece
- MR Author ID: 915316
- ORCID: 0000-0001-5471-5560
- Email: csaroglou@uoi.gr, christos.saroglou@gmail.com
- Received by editor(s): June 21, 2020
- Received by editor(s) in revised form: September 10, 2020
- Published electronically: February 8, 2021
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 3007-3024
- MSC (2020): Primary 52A40
- DOI: https://doi.org/10.1090/tran/8321
- MathSciNet review: 4223041