Inverse problems for the fractional-Laplacian with lower order non-local perturbations
Authors:
S. Bhattacharyya, T. Ghosh and G. Uhlmann
Journal:
Trans. Amer. Math. Soc. 374 (2021), 3053-3075
MSC (2020):
Primary 35R30, 35R11
DOI:
https://doi.org/10.1090/tran/8151
Published electronically:
March 8, 2021
MathSciNet review:
4237942
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In this article, we introduce a model featuring a Lévy process in a bounded domain with semi-transparent boundary, by considering the fractional Laplacian operator with lower order non-local perturbations. We study the wellposedness of the model, certain qualitative properties and Runge type approximation. Furthermore, we consider the inverse problem of determining the unknown coefficients in our model from the exterior measurements of the corresponding Cauchy data. We also discuss the recovery of all the unknown coefficients from a single measurement.
- Robert A. Adams and John J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. MR 2424078
- David Applebaum, Lévy processes and stochastic calculus, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 116, Cambridge University Press, Cambridge, 2009. MR 2512800
- Angkana Rüland and Mikko Salo, The fractional Calderón problem: low regularity and stability, Nonlinear Anal. 193 (2020), 111529, 56. MR 4062981, DOI https://doi.org/10.1016/j.na.2019.05.010
- Fuensanta Andreu-Vaillo, José M. Mazón, Julio D. Rossi, and J. Julián Toledo-Melero, Nonlocal diffusion problems, Mathematical Surveys and Monographs, vol. 165, American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid, 2010. MR 2722295
- Krzysztof Bogdan, Krzysztof Burdzy, and Zhen-Qing Chen, Censored stable processes, Probab. Theory Related Fields 127 (2003), no. 1, 89–152. MR 2006232, DOI https://doi.org/10.1007/s00440-003-0275-1
- Claudia Bucur and Enrico Valdinoci, Nonlocal diffusion and applications, Lecture Notes of the Unione Matematica Italiana, vol. 20, Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016. MR 3469920
- Alberto-P. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980) Soc. Brasil. Mat., Rio de Janeiro, 1980, pp. 65–73. MR 590275
- Huyuan Chen, The Dirichlet elliptic problem involving regional fractional Laplacian, J. Math. Phys. 59 (2018), no. 7, 071504, 19. MR 3828679, DOI https://doi.org/10.1063/1.5046685
- Kai Lai Chung and Zhong Xin Zhao, From Brownian motion to Schrödinger’s equation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 312, Springer-Verlag, Berlin, 1995. MR 1329992
- Bartłomiej Dyda, Lizaveta Ihnatsyeva, and Antti V. Vähäkangas, On improved fractional Sobolev-Poincaré inequalities, Ark. Mat. 54 (2016), no. 2, 437–454. MR 3546360, DOI https://doi.org/10.1007/s11512-015-0227-x
- Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573. MR 2944369, DOI https://doi.org/10.1016/j.bulsci.2011.12.004
- Serena Dipierro, Xavier Ros-Oton, and Enrico Valdinoci, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam. 33 (2017), no. 2, 377–416. MR 3651008, DOI https://doi.org/10.4171/RMI/942
- Bartłomiej Dyda, A fractional order Hardy inequality, Illinois J. Math. 48 (2004), no. 2, 575–588. MR 2085428
- Tuhin Ghosh, Yi-Hsuan Lin, and Jingni Xiao, The Calderón problem for variable coefficients nonlocal elliptic operators, Comm. Partial Differential Equations 42 (2017), no. 12, 1923–1961. MR 3764930, DOI https://doi.org/10.1080/03605302.2017.1390681
- Qing-Yang Guan and Zhi-Ming Ma, Boundary problems for fractional Laplacians, Stoch. Dyn. 5 (2005), no. 3, 385–424. MR 2167307, DOI https://doi.org/10.1142/S021949370500150X
- Qing-Yang Guan and Zhi-Ming Ma, Reflected symmetric $\alpha $-stable processes and regional fractional Laplacian, Probab. Theory Related Fields 134 (2006), no. 4, 649–694. MR 2214908, DOI https://doi.org/10.1007/s00440-005-0438-3
- Tuhin Ghosh, Angkana Rüland, Mikko Salo, and Gunther Uhlmann, Uniqueness and reconstruction for the fractional Calderón problem with a single measurement, J. Funct. Anal. 279 (2020), no. 1, 108505, 42. MR 4083776, DOI https://doi.org/10.1016/j.jfa.2020.108505
- Gerd Grubb, Local and nonlocal boundary conditions for $\mu $-transmission and fractional elliptic pseudodifferential operators, Anal. PDE 7 (2014), no. 7, 1649–1682. MR 3293447, DOI https://doi.org/10.2140/apde.2014.7.1649
- Tuhin Ghosh, Mikko Salo, and Gunther Uhlmann, The Calderón problem for the fractional Schrödinger equation, Anal. PDE 13 (2020), no. 2, 455–475. MR 4078233, DOI https://doi.org/10.2140/apde.2020.13.455
- Ritva Hurri-Syrjänen and Antti V. Vähäkangas, On fractional Poincaré inequalities, J. Anal. Math. 120 (2013), 85–104. MR 3095149, DOI https://doi.org/10.1007/s11854-013-0015-0
- Mateusz Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal. 20 (2017), no. 1, 7–51. MR 3613319, DOI https://doi.org/10.1515/fca-2017-0002
- N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 180. MR 0350027
- William McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000. MR 1742312
- Ralf Metzler and Joseph Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), no. 1, 77. MR 1809268, DOI https://doi.org/10.1016/S0370-1573%2800%2900070-3
- Augusto C. Ponce, Elliptic PDEs, measures and capacities, EMS Tracts in Mathematics, vol. 23, European Mathematical Society (EMS), Zürich, 2016. From the Poisson equations to nonlinear Thomas-Fermi problems. MR 3675703
- Luc Tartar, An introduction to Sobolev spaces and interpolation spaces, Lecture Notes of the Unione Matematica Italiana, vol. 3, Springer, Berlin; UMI, Bologna, 2007. MR 2328004
- Roger Temam, Navier-Stokes equations, Revised edition, Studies in Mathematics and its Applications, vol. 2, North-Holland Publishing Co., Amsterdam-New York, 1979. Theory and numerical analysis; With an appendix by F. Thomasset. MR 603444
- Gunther Uhlmann, Inverse problems: seeing the unseen, Bull. Math. Sci. 4 (2014), no. 2, 209–279. MR 3228575, DOI https://doi.org/10.1007/s13373-014-0051-9
Retrieve articles in Transactions of the American Mathematical Society with MSC (2020): 35R30, 35R11
Retrieve articles in all journals with MSC (2020): 35R30, 35R11
Additional Information
S. Bhattacharyya
Affiliation:
Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong
MR Author ID:
1273208
ORCID:
0000-0002-7467-7968
Email:
arkatifr@gmail.com
T. Ghosh
Affiliation:
Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong; and Department of Mathematics, University of Washington
Email:
imaginetuhin@gmail.com
G. Uhlmann
Affiliation:
Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong; and Department of Mathematics, University of Washington
MR Author ID:
175790
Email:
gunther@math.washington.edu
Received by editor(s):
January 1, 2019
Received by editor(s) in revised form:
September 6, 2019, November 6, 2019, and February 14, 2020
Published electronically:
March 8, 2021
Additional Notes:
The first and second authors were partly supported by Project no. 16305018 of the Hong Kong Research Grant Council.
The third author was partly supported by NSF, the Si-Yuan Professorship at the IAS-HKUST and the Walker Family Endowed Professorship at the University of Washington.
Article copyright:
© Copyright 2021
American Mathematical Society