Ordinary families of Klingen Eisenstein series on symplectic groups
HTML articles powered by AMS MathViewer
- by Zheng Liu PDF
- Trans. Amer. Math. Soc. 374 (2021), 3331-3395 Request permission
Abstract:
We construct $(n+1)$-variable Hida families of Klingen Eisenstein series on $\operatorname {Sp}(2n+2)$ for $n$-variable Hida families on $\operatorname {Sp}(2n)$, and relate their images under the Siegel operator to $p$-adic $L$-functions. We also carry out some preliminary calculations of the non-degenerate Fourier coefficients of the constructed Klingen Eisenstein families.References
- F. Andreatta and .A Iovita, Triple product $p$-adic $L$-functions associated to finite slope $p$-adic families of modular forms: with an appendix by Eric Urban, arXiv:1708.02785, 2017.
- James Arthur, The endoscopic classification of representations, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic groups. MR 3135650, DOI 10.1090/coll/061
- Siegfried Böcherer, Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen. II, Math. Z. 189 (1985), no. 1, 81–110 (German). MR 776540, DOI 10.1007/BF01246946
- Siegfried Böcherer, Über die Funktionalgleichung automorpher $L$-Funktionen zur Siegelschen Modulgruppe, J. Reine Angew. Math. 362 (1985), 146–168 (German). MR 809972, DOI 10.1515/crll.1985.362.146
- S. Böcherer and C.-G. Schmidt, $p$-adic measures attached to Siegel modular forms, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 5, 1375–1443 (English, with English and French summaries). MR 1800123, DOI 10.5802/aif.1796
- Gaëtan Chenevier and Michael Harris, Construction of automorphic Galois representations, II, Camb. J. Math. 1 (2013), no. 1, 53–73. MR 3272052, DOI 10.4310/CJM.2013.v1.n1.a2
- Laurent Clozel, Michael Harris, Jean-Pierre Labesse, and Bao-Châu Ngô (eds.), On the stabilization of the trace formula, Stabilization of the Trace Formula, Shimura Varieties, and Arithmetic Applications, vol. 1, International Press, Somerville, MA, 2011. MR 2742611
- John Coates, Motivic $p$-adic $L$-functions, $L$-functions and arithmetic (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, pp. 141–172. MR 1110392, DOI 10.1017/CBO9780511526053.006
- Ellen Eischen, Michael Harris, Jianshu Li, and Christopher Skinner, $p$-adic $L$-functions for unitary groups, Forum Math. Pi 8 (2020), e9, 160. MR 4096618, DOI 10.1017/fmp.2020.4
- Ellen E. Eischen, $p$-adic differential operators on automorphic forms on unitary groups, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 1, 177–243 (English, with English and French summaries). MR 2986270, DOI 10.5802/aif.2704
- Ellen Eischen and Xin Wan, $p$-adic Eisenstein series and $L$-functions of certain cusp forms on definite unitary groups, J. Inst. Math. Jussieu 15 (2016), no. 3, 471–510. MR 3505656, DOI 10.1017/S1474748014000395
- Gerd Faltings and Ching-Li Chai, Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22, Springer-Verlag, Berlin, 1990. With an appendix by David Mumford. MR 1083353, DOI 10.1007/978-3-662-02632-8
- Tobias Finis, Divisibility of anticyclotomic $L$-functions and theta functions with complex multiplication, Ann. of Math. (2) 163 (2006), no. 3, 767–807. MR 2215134, DOI 10.4007/annals.2006.163.767
- Paul B. Garrett, Pullbacks of Eisenstein series; applications, Automorphic forms of several variables (Katata, 1983) Progr. Math., vol. 46, Birkhäuser Boston, Boston, MA, 1984, pp. 114–137. MR 763012
- Paul B. Garrett, Integral representations of Eisenstein series and $L$-functions, Number theory, trace formulas and discrete groups (Oslo, 1987) Academic Press, Boston, MA, 1989, pp. 241–264. MR 993320
- Michael Harris, Arithmetic vector bundles and automorphic forms on Shimura varieties. I, Invent. Math. 82 (1985), no. 1, 151–189. MR 808114, DOI 10.1007/BF01394784
- Michael Harris, Arithmetic vector bundles and automorphic forms on Shimura varieties. II, Compositio Math. 60 (1986), no. 3, 323–378. MR 869106
- Haruzo Hida, Elementary theory of $L$-functions and Eisenstein series, London Mathematical Society Student Texts, vol. 26, Cambridge University Press, Cambridge, 1993. MR 1216135, DOI 10.1017/CBO9780511623691
- Haruzo Hida, Control theorems of coherent sheaves on Shimura varieties of PEL type, J. Inst. Math. Jussieu 1 (2002), no. 1, 1–76. MR 1954939, DOI 10.1017/S1474748002000014
- Ming-Lun Hsieh, Eisenstein congruence on unitary groups and Iwasawa main conjectures for CM fields, J. Amer. Math. Soc. 27 (2014), no. 3, 753–862. MR 3194494, DOI 10.1090/S0894-0347-2014-00786-4
- H. Hida and J. Tilouine, On the anticyclotomic main conjecture for CM fields, Invent. Math. 117 (1994), no. 1, 89–147. MR 1269427, DOI 10.1007/BF01232236
- Hans Plesner Jakobsen and Michèle Vergne, Restrictions and expansions of holomorphic representations, J. Functional Analysis 34 (1979), no. 1, 29–53. MR 551108, DOI 10.1016/0022-1236(79)90023-5
- Nicholas M. Katz, $p$-adic $L$-functions for CM fields, Invent. Math. 49 (1978), no. 3, 199–297. MR 513095, DOI 10.1007/BF01390187
- Stephen S. Kudla and Stephen Rallis, Ramified degenerate principal series representations for $\textrm {Sp}(n)$, Israel J. Math. 78 (1992), no. 2-3, 209–256. MR 1194967, DOI 10.1007/BF02808058
- M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), no. 1, 1–47. MR 463359, DOI 10.1007/BF01389900
- Zheng Liu, $p$-adic $L$-functions for ordinary families on symplectic groups, J. Inst. Math. Jussieu 19 (2020), no. 4, 1287–1347. MR 4120810, DOI 10.1017/s1474748018000415
- Zheng Liu, The doubling Archimedean zeta integrals for $p$-adic interpolation, To appear in Math. Res. Lett., 2019.
- Zheng Liu, Nearly overconvergent Siegel modular forms, Ann. Inst. Fourier (Grenoble) 69 (2019), no. 6, 2439–2506 (English, with English and French summaries). MR 4033924, DOI 10.5802/aif.3299
- Erez M. Lapid and Stephen Rallis, On the local factors of representations of classical groups, Automorphic representations, $L$-functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11, de Gruyter, Berlin, 2005, pp. 309–359. MR 2192828, DOI 10.1515/9783110892703.309
- Zheng Liu and Giovanni Rosso, Non-cuspidal Hida theory for Siegel modular forms and trivial zeros of $p$-adic $L$-functions, Math. Ann. 378 (2020), no. 1-2, 153–231. MR 4150915, DOI 10.1007/s00208-020-01966-x
- Colette Mœglin and Jean-Loup Waldspurger, Décomposition spectrale et séries d’Eisenstein, Progress in Mathematics, vol. 113, Birkhäuser Verlag, Basel, 1994 (French, with English summary). Une paraphrase de l’Écriture. [A paraphrase of Scripture]. MR 1261867
- B. Mazur and A. Wiles, Class fields of abelian extensions of $\textbf {Q}$, Invent. Math. 76 (1984), no. 2, 179–330. MR 742853, DOI 10.1007/BF01388599
- Vincent Pilloni, Sur la théorie de Hida pour le groupe $\textrm {GSp}_{2g}$, Bull. Soc. Math. France 140 (2012), no. 3, 335–400 (French, with English and French summaries). MR 3059119, DOI 10.24033/bsmf.2630
- I. Piatetski-Shapiro and Stephen Rallis, $L$-functions for the classical groups, volume 1254 of Lecture Notes in Mathematics, pages 1–52. Springer-Verlag, Berlin, 1987.
- Freydoon Shahidi, Eisenstein series and automorphic $L$-functions, American Mathematical Society Colloquium Publications, vol. 58, American Mathematical Society, Providence, RI, 2010. MR 2683009, DOI 10.1090/coll/058
- Goro Shimura, Confluent hypergeometric functions on tube domains, Math. Ann. 260 (1982), no. 3, 269–302. MR 669297, DOI 10.1007/BF01461465
- Goro Shimura, Euler products and Eisenstein series, CBMS Regional Conference Series in Mathematics, vol. 93, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1997. MR 1450866, DOI 10.1090/cbms/093
- Goro Shimura, Arithmeticity in the theory of automorphic forms, Mathematical Surveys and Monographs, vol. 82, American Mathematical Society, Providence, RI, 2000. MR 1780262, DOI 10.1090/surv/082
- Sug Woo Shin, Galois representations arising from some compact Shimura varieties, Ann. of Math. (2) 173 (2011), no. 3, 1645–1741. MR 2800722, DOI 10.4007/annals.2011.173.3.9
- Christopher Skinner and Eric Urban, The Iwasawa main conjectures for $\rm GL_2$, Invent. Math. 195 (2014), no. 1, 1–277. MR 3148103, DOI 10.1007/s00222-013-0448-1
- W. Jay Sweet, Jr. Functional equations of $p$-adic zeta integrals and representations of the metaplectic group. preprint.
- W. Jay Sweet Jr., A computation of the gamma matrix of a family of $p$-adic zeta integrals, J. Number Theory 55 (1995), no. 2, 222–260. MR 1366572, DOI 10.1006/jnth.1995.1139
- Eric Urban, Selmer groups and the Eisenstein-Klingen ideal, Duke Math. J. 106 (2001), no. 3, 485–525. MR 1813234, DOI 10.1215/S0012-7094-01-10633-9
- Eric Urban, Groupes de Selmer et fonctions $L$ $p$-adiques pour les représentations modulaires adjointes, preprint, 2006.
- Eric Urban, Nearly overconvergent modular forms, Iwasawa theory 2012, Contrib. Math. Comput. Sci., vol. 7, Springer, Heidelberg, 2014, pp. 401–441. MR 3586822
- V. Vatsal, Special values of anticyclotomic $L$-functions, Duke Math. J. 116 (2003), no. 2, 219–261. MR 1953292, DOI 10.1215/S0012-7094-03-11622-1
- Xin Wan, Families of nearly ordinary Eisenstein series on unitary groups, Algebra Number Theory 9 (2015), no. 9, 1955–2054. With an appendix by Kai-Wen Lan. MR 3435811, DOI 10.2140/ant.2015.9.1955
- Xin Wan, Iwasawa main conjecture for Rankin-Selberg $p$-adic $L$-functions, Algebra Number Theory 14 (2020), no. 2, 383–483. MR 4104413, DOI 10.2140/ant.2020.14.383
- A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), no. 3, 493–540. MR 1053488, DOI 10.2307/1971468
Additional Information
- Zheng Liu
- Affiliation: Department of Mathematics, University of California Santa Barbara, South Hall, Room 6512, Santa Barbara, California 93106
- Received by editor(s): July 8, 2019
- Received by editor(s) in revised form: February 24, 2020, July 10, 2020, and July 27, 2020
- Published electronically: February 24, 2021
- Additional Notes: During her time at IAS, the author was supported by the NSF under Grant No. DMS-1638352.
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 3331-3395
- MSC (2020): Primary 11F33; Secondary 11F30, 11F46, 11G18
- DOI: https://doi.org/10.1090/tran/8270
- MathSciNet review: 4237950