String$^c$ structures and modular invariants
Authors:
Ruizhi Huang, Fei Han and Haibao Duan
Journal:
Trans. Amer. Math. Soc. 374 (2021), 3491-3533
MSC (2020):
Primary 53C27, 55R35, 57S15; Secondary 57R20, 22E67, 55R40
DOI:
https://doi.org/10.1090/tran/8311
Published electronically:
January 27, 2021
MathSciNet review:
4237954
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper, we study some algebraic topology aspects of String$^c$ structures, more precisely, from the perspective of Whitehead tower and the perspective of the loop group of $Spin^c(n)$. We also extend the generalized Witten genera constructed for the first time by Chen et al. [J. Differential Geom. 88 (2011), pp. 1β40] to correspond to String$^c$ structures of various levels and give vanishing results for them.
- M. F. Atiyah and R. Bott, The Lefschetz fixed point theorems for elliptic complexes, I, II, in Atiyah, M. F., Collected works, Vol. 3, Oxford Sci. Pub., Oxford. Univ. Press, NY, 1988, 91-170.
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546β604. MR 236952, DOI https://doi.org/10.2307/1970717
- Ulrich Bunke, String structures and trivialisations of a Pfaffian line bundle, Comm. Math. Phys. 307 (2011), no. 3, 675β712. MR 2842963, DOI https://doi.org/10.1007/s00220-011-1348-0
- K. Chandrasekharan, Elliptic functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 281, Springer-Verlag, Berlin, 1985. MR 808396
- Qingtao Chen, Fei Han, and Weiping Zhang, Witten genus and vanishing results on complete intersections, C. R. Math. Acad. Sci. Paris 348 (2010), no. 5-6, 295β298 (English, with English and French summaries). MR 2600126, DOI https://doi.org/10.1016/j.crma.2010.02.005
- Qingtao Chen, Fei Han, and Weiping Zhang, Generalized Witten genus and vanishing theorems, J. Differential Geom. 88 (2011), no. 1, 1β40. MR 2819754
- F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, The double suspension and exponents of the homotopy groups of spheres, Ann. of Math. (2) 110 (1979), no. 3, 549β565. MR 554384, DOI https://doi.org/10.2307/1971238
- A. Dessai, The Witten genus and $S^3$-actions on manifolds, preprint, 1994, Preprint-Reihe des Fachbereichs Mathematik, Univ. Mainz, Nr. 6, February 1994.
- A. Dessai, ${\rm Spin}^c$-manifolds with ${\rm Pin}(2)$-action, Math. Ann. 315 (1999), no. 4, 511β528. MR 1731460, DOI https://doi.org/10.1007/s002080050327
- Anand Dessai and Burkhard Wilking, Torus actions on homotopy complex projective spaces, Math. Z. 247 (2004), no. 3, 505β511. MR 2114425, DOI https://doi.org/10.1007/s00209-003-0614-z
- H. Duan, Characteristic classes and invariants of Spin geometry, preprint, 2018.
- F. Han and V. Mathai, Witten Genus and Elliptic genera for proper actions, arXiv:1807.06863.
- John R. Harper, Secondary cohomology operations, Graduate Studies in Mathematics, vol. 49, American Mathematical Society, Providence, RI, 2002. MR 1913285
- Akio Hattori, ${\rm Spin}^{c}$-structures and $S^{1}$-actions, Invent. Math. 48 (1978), no. 1, 7β31. MR 508087, DOI https://doi.org/10.1007/BF01390060
- Akio Hattori and Tomoyoshi Yoshida, Lifting compact group actions in fiber bundles, Japan. J. Math. (N.S.) 2 (1976), no. 1, 13β25. MR 461538, DOI https://doi.org/10.4099/math1924.2.13
- Friedrich Hirzebruch, Thomas Berger, and Rainer Jung, Manifolds and modular forms, Aspects of Mathematics, E20, Friedr. Vieweg & Sohn, Braunschweig, 1992. With appendices by Nils-Peter Skoruppa and by Paul Baum. MR 1189136
- M. J. Hopkins, Algebraic topology and modular forms, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 291β317. MR 1989190
- T. P. Killingback, World-sheet anomalies and loop geometry, Nuclear Phys. B 288 (1987), no. 3-4, 578β588. MR 892061, DOI https://doi.org/10.1016/0550-3213%2887%2990229-X
- Daisuke Kishimoto and Akira Kono, On the cohomology of free and twisted loop spaces, J. Pure Appl. Algebra 214 (2010), no. 5, 646β653. MR 2577671, DOI https://doi.org/10.1016/j.jpaa.2009.07.006
- C. Kottke and R. Melrose, Equivalence of string and fusion loop-spin structures, arXiv:1309.0210, 2013.
- Chris Kottke and Richard B. Melrose, Loop-fusion cohomology and transgression, Math. Res. Lett. 22 (2015), no. 4, 1177β1192. MR 3391882, DOI https://doi.org/10.4310/MRL.2015.v22.n4.a11
- Katsuhiko Kuribayashi, Module derivations and the adjoint action of a finite loop space, J. Math. Kyoto Univ. 39 (1999), no. 1, 67β85. MR 1684168, DOI https://doi.org/10.1215/kjm/1250517954
- H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992
- Kefeng Liu, Modular invariance and characteristic numbers, Comm. Math. Phys. 174 (1995), no. 1, 29β42. MR 1372798
- Kefeng Liu, On modular invariance and rigidity theorems, J. Differential Geom. 41 (1995), no. 2, 343β396. MR 1331972
- Kefeng Liu, On elliptic genera and theta-functions, Topology 35 (1996), no. 3, 617β640. MR 1396769, DOI https://doi.org/10.1016/0040-9383%2895%2900042-9
- Kefeng Liu and Xiaonan Ma, On family rigidity theorems. I, Duke Math. J. 102 (2000), no. 3, 451β474. MR 1756105, DOI https://doi.org/10.1215/S0012-7094-00-10234-7
- Kefeng Liu and Xiaonan Ma, On family rigidity theorems for ${\rm Spin}^c$ manifolds, Mirror symmetry, IV (Montreal, QC, 2000) AMS/IP Stud. Adv. Math., vol. 33, Amer. Math. Soc., Providence, RI, 2002, pp. 343β360. MR 1969037
- Kefeng Liu, Xiaonan Ma, and Weiping Zhang, ${\rm Spin}^c$ manifolds and rigidity theorems in $K$-theory, Asian J. Math. 4 (2000), no. 4, 933β959. Loo-Keng Hua: a great mathematician of the twentieth century. MR 1870666, DOI https://doi.org/10.4310/AJM.2000.v4.n4.a12
- Kefeng Liu, Xiaonan Ma, and Weiping Zhang, Rigidity and vanishing theorems in $K$-theory, Comm. Anal. Geom. 11 (2003), no. 1, 121β180. MR 2016198, DOI https://doi.org/10.4310/CAG.2003.v11.n1.a6
- Kefeng Liu, Xiaonan Ma, and Weiping Zhang, On elliptic genera and foliations, Math. Res. Lett. 8 (2001), no. 3, 361β376. MR 1839484, DOI https://doi.org/10.4310/MRL.2001.v8.n3.a11
- B. Liu and J. Yu, On the Witten Rigidity Theorem for String$^c$ Manifolds, Pacific J. Math., 2013, 266(2): 477-508.
- Mikiya Masuda and Yuh-Dong Tsai, Tangential representations of cyclic group actions on homotopy complex projective spaces, Osaka J. Math. 22 (1985), no. 4, 907β919. MR 815458
- John McCleary, A userβs guide to spectral sequences, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 58, Cambridge University Press, Cambridge, 2001. MR 1793722
- Dennis A. McLaughlin, Orientation and string structures on loop space, Pacific J. Math. 155 (1992), no. 1, 143β156. MR 1174481
- Paul Melvin and Jeffrey Parker, $4$-manifolds with large symmetry groups, Topology 25 (1986), no. 1, 71β83. MR 836725, DOI https://doi.org/10.1016/0040-9383%2886%2990006-6
- Brian A. Munson and Ismar VoliΔ, Cubical homotopy theory, New Mathematical Monographs, vol. 25, Cambridge University Press, Cambridge, 2015. MR 3559153
- Thomas Nikolaus, Christoph Sachse, and Christoph Wockel, A smooth model for the string group, Int. Math. Res. Not. IMRN 16 (2013), 3678β3721. MR 3090706, DOI https://doi.org/10.1093/imrn/rns154
- Ted Petrie, Smooth $S^{1}$ actions on homotopy complex projective spaces and related topics, Bull. Amer. Math. Soc. 78 (1972), 105β153. MR 296970, DOI https://doi.org/10.1090/S0002-9904-1972-12898-2
- Corbett Redden, String structures and canonical 3-forms, Pacific J. Math. 249 (2011), no. 2, 447β484. MR 2782680, DOI https://doi.org/10.2140/pjm.2011.249.447
- Hisham Sati, Geometric and topological structures related to M-branes II: Twisted string and string$^c$ structures, J. Aust. Math. Soc. 90 (2011), no. 1, 93β108. MR 2810946, DOI https://doi.org/10.1017/S1446788711001261
- Hisham Sati, Urs Schreiber, and Jim Stasheff, Twisted differential string and fivebrane structures, Comm. Math. Phys. 315 (2012), no. 1, 169β213. MR 2966944, DOI https://doi.org/10.1007/s00220-012-1510-3
- Stephan Stolz, A conjecture concerning positive Ricci curvature and the Witten genus, Math. Ann. 304 (1996), no. 4, 785β800. MR 1380455, DOI https://doi.org/10.1007/BF01446319
- Stephan Stolz and Peter Teichner, What is an elliptic object?, Topology, geometry and quantum field theory, London Math. Soc. Lecture Note Ser., vol. 308, Cambridge Univ. Press, Cambridge, 2004, pp. 247β343. MR 2079378, DOI https://doi.org/10.1017/CBO9780511526398.013
- S. Stolz and P. Teichner, The Spinor bundle on loop space, MPIM preprint, 2005.
- Robert M. Switzer, Algebraic topologyβhomotopy and homology, Classics in Mathematics, Springer-Verlag, Berlin, 2002. Reprint of the 1975 original [Springer, New York; MR0385836 (52 #6695)]. MR 1886843
- Emery Thomas, On the cohomology groups of the classifying space for the stable spinor groups, Bol. Soc. Mat. Mexicana (2) 7 (1962), 57β69. MR 153027
- Konrad Waldorf, Transgression to loop spaces and its inverse, III: Gerbes and thin fusion bundles, Adv. Math. 231 (2012), no. 6, 3445β3472. MR 2980505, DOI https://doi.org/10.1016/j.aim.2012.08.016
- Konrad Waldorf, String geometry vs. spin geometry on loop spaces, J. Geom. Phys. 97 (2015), 190β226. MR 3385126, DOI https://doi.org/10.1016/j.geomphys.2015.07.003
- Konrad Waldorf, Spin structures on loop spaces that characterize string manifolds, Algebr. Geom. Topol. 16 (2016), no. 2, 675β709. MR 3493404, DOI https://doi.org/10.2140/agt.2016.16.675
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508
- Edward Witten, The index of the Dirac operator in loop space, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986) Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp. 161β181. MR 970288, DOI https://doi.org/10.1007/BFb0078045
- Don Zagier, Note on the Landweber-Stong elliptic genus, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986) Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp. 216β224. MR 970290, DOI https://doi.org/10.1007/BFb0078047
Retrieve articles in Transactions of the American Mathematical Society with MSC (2020): 53C27, 55R35, 57S15, 57R20, 22E67, 55R40
Retrieve articles in all journals with MSC (2020): 53C27, 55R35, 57S15, 57R20, 22E67, 55R40
Additional Information
Ruizhi Huang
Affiliation:
Institute of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100190, Peopleβs Republic of China
ORCID:
0000-0001-6250-4333
Email:
huangrz@amss.ac.cn
Fei Han
Affiliation:
Department of Mathematics, National University of Singapore, Singapore 119076
Email:
mathanf@nus.edu.sg
Haibao Duan
Affiliation:
Institute of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100190, Peopleβs Republic of China
Email:
dhb@math.ac.cn
Received by editor(s):
November 4, 2019
Received by editor(s) in revised form:
September 2, 2020
Published electronically:
January 27, 2021
Additional Notes:
The first author was supported by Postdoctoral International Exchange Program for Incoming Postdoctoral Students under Chinese Postdoctoral Council and Chinese Postdoctoral Science Foundation. He was also supported in part by Chinese Postdoctoral Science Foundation (Grant nos. 2018M631605 and 2019T120145), and National Natural Science Foundation of China (Grant no. 11801544).
The second author was partially supported by the grant AcRF R-146-000-263-114 from National University of Singapore.
The third author was partially supported by National Natural Science Foundation of China (Grant nos. 11131008 and 11661131004).
Article copyright:
© Copyright 2021
American Mathematical Society