String$^c$ structures and modular invariants
HTML articles powered by AMS MathViewer
- by Ruizhi Huang, Fei Han and Haibao Duan PDF
- Trans. Amer. Math. Soc. 374 (2021), 3491-3533 Request permission
Abstract:
In this paper, we study some algebraic topology aspects of String$^c$ structures, more precisely, from the perspective of Whitehead tower and the perspective of the loop group of $Spin^c(n)$. We also extend the generalized Witten genera constructed for the first time by Chen et al. [J. Differential Geom. 88 (2011), pp. 1โ40] to correspond to String$^c$ structures of various levels and give vanishing results for them.References
- M. F. Atiyah and R. Bott, The Lefschetz fixed point theorems for elliptic complexes, I, II, in Atiyah, M. F., Collected works, Vol. 3, Oxford Sci. Pub., Oxford. Univ. Press, NY, 1988, 91-170.
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546โ604. MR 236952, DOI 10.2307/1970717
- Ulrich Bunke, String structures and trivialisations of a Pfaffian line bundle, Comm. Math. Phys. 307 (2011), no.ย 3, 675โ712. MR 2842963, DOI 10.1007/s00220-011-1348-0
- K. Chandrasekharan, Elliptic functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 281, Springer-Verlag, Berlin, 1985. MR 808396, DOI 10.1007/978-3-642-52244-4
- Qingtao Chen, Fei Han, and Weiping Zhang, Witten genus and vanishing results on complete intersections, C. R. Math. Acad. Sci. Paris 348 (2010), no.ย 5-6, 295โ298 (English, with English and French summaries). MR 2600126, DOI 10.1016/j.crma.2010.02.005
- Qingtao Chen, Fei Han, and Weiping Zhang, Generalized Witten genus and vanishing theorems, J. Differential Geom. 88 (2011), no.ย 1, 1โ40. MR 2819754
- F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, The double suspension and exponents of the homotopy groups of spheres, Ann. of Math. (2) 110 (1979), no.ย 3, 549โ565. MR 554384, DOI 10.2307/1971238
- A. Dessai, The Witten genus and $S^3$-actions on manifolds, preprint, 1994, Preprint-Reihe des Fachbereichs Mathematik, Univ. Mainz, Nr. 6, February 1994.
- A. Dessai, $\textrm {Spin}^c$-manifolds with $\textrm {Pin}(2)$-action, Math. Ann. 315 (1999), no.ย 4, 511โ528. MR 1731460, DOI 10.1007/s002080050327
- Anand Dessai and Burkhard Wilking, Torus actions on homotopy complex projective spaces, Math. Z. 247 (2004), no.ย 3, 505โ511. MR 2114425, DOI 10.1007/s00209-003-0614-z
- H. Duan, Characteristic classes and invariants of Spin geometry, preprint, 2018.
- F. Han and V. Mathai, Witten Genus and Elliptic genera for proper actions, arXiv:1807.06863.
- John R. Harper, Secondary cohomology operations, Graduate Studies in Mathematics, vol. 49, American Mathematical Society, Providence, RI, 2002. MR 1913285, DOI 10.1090/gsm/049
- Akio Hattori, $\textrm {Spin}^{c}$-structures and $S^{1}$-actions, Invent. Math. 48 (1978), no.ย 1, 7โ31. MR 508087, DOI 10.1007/BF01390060
- Akio Hattori and Tomoyoshi Yoshida, Lifting compact group actions in fiber bundles, Japan. J. Math. (N.S.) 2 (1976), no.ย 1, 13โ25. MR 461538, DOI 10.4099/math1924.2.13
- Friedrich Hirzebruch, Thomas Berger, and Rainer Jung, Manifolds and modular forms, Aspects of Mathematics, E20, Friedr. Vieweg & Sohn, Braunschweig, 1992. With appendices by Nils-Peter Skoruppa and by Paul Baum. MR 1189136, DOI 10.1007/978-3-663-14045-0
- M. J. Hopkins, Algebraic topology and modular forms, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp.ย 291โ317. MR 1989190
- T. P. Killingback, World-sheet anomalies and loop geometry, Nuclear Phys. B 288 (1987), no.ย 3-4, 578โ588. MR 892061, DOI 10.1016/0550-3213(87)90229-X
- Daisuke Kishimoto and Akira Kono, On the cohomology of free and twisted loop spaces, J. Pure Appl. Algebra 214 (2010), no.ย 5, 646โ653. MR 2577671, DOI 10.1016/j.jpaa.2009.07.006
- C. Kottke and R. Melrose, Equivalence of string and fusion loop-spin structures, arXiv:1309.0210, 2013.
- Chris Kottke and Richard B. Melrose, Loop-fusion cohomology and transgression, Math. Res. Lett. 22 (2015), no.ย 4, 1177โ1192. MR 3391882, DOI 10.4310/MRL.2015.v22.n4.a11
- Katsuhiko Kuribayashi, Module derivations and the adjoint action of a finite loop space, J. Math. Kyoto Univ. 39 (1999), no.ย 1, 67โ85. MR 1684168, DOI 10.1215/kjm/1250517954
- H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992
- Kefeng Liu, Modular invariance and characteristic numbers, Comm. Math. Phys. 174 (1995), no.ย 1, 29โ42. MR 1372798, DOI 10.1007/BF02099462
- Kefeng Liu, On modular invariance and rigidity theorems, J. Differential Geom. 41 (1995), no.ย 2, 343โ396. MR 1331972
- Kefeng Liu, On elliptic genera and theta-functions, Topology 35 (1996), no.ย 3, 617โ640. MR 1396769, DOI 10.1016/0040-9383(95)00042-9
- Kefeng Liu and Xiaonan Ma, On family rigidity theorems. I, Duke Math. J. 102 (2000), no.ย 3, 451โ474. MR 1756105, DOI 10.1215/S0012-7094-00-10234-7
- Kefeng Liu and Xiaonan Ma, On family rigidity theorems for $\textrm {Spin}^c$ manifolds, Mirror symmetry, IV (Montreal, QC, 2000) AMS/IP Stud. Adv. Math., vol. 33, Amer. Math. Soc., Providence, RI, 2002, pp.ย 343โ360. MR 1969037, DOI 10.1090/amsip/033/23
- Kefeng Liu, Xiaonan Ma, and Weiping Zhang, $\textrm {Spin}^c$ manifolds and rigidity theorems in $K$-theory, Asian J. Math. 4 (2000), no.ย 4, 933โ959. Loo-Keng Hua: a great mathematician of the twentieth century. MR 1870666, DOI 10.4310/AJM.2000.v4.n4.a12
- Kefeng Liu, Xiaonan Ma, and Weiping Zhang, Rigidity and vanishing theorems in $K$-theory, Comm. Anal. Geom. 11 (2003), no.ย 1, 121โ180. MR 2016198, DOI 10.4310/CAG.2003.v11.n1.a6
- Kefeng Liu, Xiaonan Ma, and Weiping Zhang, On elliptic genera and foliations, Math. Res. Lett. 8 (2001), no.ย 3, 361โ376. MR 1839484, DOI 10.4310/MRL.2001.v8.n3.a11
- B. Liu and J. Yu, On the Witten Rigidity Theorem for String$^c$ Manifolds, Pacific J. Math., 2013, 266(2): 477-508.
- Mikiya Masuda and Yuh-Dong Tsai, Tangential representations of cyclic group actions on homotopy complex projective spaces, Osaka J. Math. 22 (1985), no.ย 4, 907โ919. MR 815458
- John McCleary, A userโs guide to spectral sequences, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 58, Cambridge University Press, Cambridge, 2001. MR 1793722
- Dennis A. McLaughlin, Orientation and string structures on loop space, Pacific J. Math. 155 (1992), no.ย 1, 143โ156. MR 1174481, DOI 10.2140/pjm.1992.155.143
- Paul Melvin and Jeffrey Parker, $4$-manifolds with large symmetry groups, Topology 25 (1986), no.ย 1, 71โ83. MR 836725, DOI 10.1016/0040-9383(86)90006-6
- Brian A. Munson and Ismar Voliฤ, Cubical homotopy theory, New Mathematical Monographs, vol. 25, Cambridge University Press, Cambridge, 2015. MR 3559153, DOI 10.1017/CBO9781139343329
- Thomas Nikolaus, Christoph Sachse, and Christoph Wockel, A smooth model for the string group, Int. Math. Res. Not. IMRN 16 (2013), 3678โ3721. MR 3090706, DOI 10.1093/imrn/rns154
- Ted Petrie, Smooth $S^{1}$ actions on homotopy complex projective spaces and related topics, Bull. Amer. Math. Soc. 78 (1972), 105โ153. MR 296970, DOI 10.1090/S0002-9904-1972-12898-2
- Corbett Redden, String structures and canonical 3-forms, Pacific J. Math. 249 (2011), no.ย 2, 447โ484. MR 2782680, DOI 10.2140/pjm.2011.249.447
- Hisham Sati, Geometric and topological structures related to M-branes II: Twisted string and string$^c$ structures, J. Aust. Math. Soc. 90 (2011), no.ย 1, 93โ108. MR 2810946, DOI 10.1017/S1446788711001261
- Hisham Sati, Urs Schreiber, and Jim Stasheff, Twisted differential string and fivebrane structures, Comm. Math. Phys. 315 (2012), no.ย 1, 169โ213. MR 2966944, DOI 10.1007/s00220-012-1510-3
- Stephan Stolz, A conjecture concerning positive Ricci curvature and the Witten genus, Math. Ann. 304 (1996), no.ย 4, 785โ800. MR 1380455, DOI 10.1007/BF01446319
- Stephan Stolz and Peter Teichner, What is an elliptic object?, Topology, geometry and quantum field theory, London Math. Soc. Lecture Note Ser., vol. 308, Cambridge Univ. Press, Cambridge, 2004, pp.ย 247โ343. MR 2079378, DOI 10.1017/CBO9780511526398.013
- S. Stolz and P. Teichner, The Spinor bundle on loop space, MPIM preprint, 2005.
- Robert M. Switzer, Algebraic topologyโhomotopy and homology, Classics in Mathematics, Springer-Verlag, Berlin, 2002. Reprint of the 1975 original [Springer, New York; MR0385836 (52 #6695)]. MR 1886843
- Emery Thomas, On the cohomology groups of the classifying space for the stable spinor groups, Bol. Soc. Mat. Mexicana (2) 7 (1962), 57โ69. MR 153027
- Konrad Waldorf, Transgression to loop spaces and its inverse, III: Gerbes and thin fusion bundles, Adv. Math. 231 (2012), no.ย 6, 3445โ3472. MR 2980505, DOI 10.1016/j.aim.2012.08.016
- Konrad Waldorf, String geometry vs. spin geometry on loop spaces, J. Geom. Phys. 97 (2015), 190โ226. MR 3385126, DOI 10.1016/j.geomphys.2015.07.003
- Konrad Waldorf, Spin structures on loop spaces that characterize string manifolds, Algebr. Geom. Topol. 16 (2016), no.ย 2, 675โ709. MR 3493404, DOI 10.2140/agt.2016.16.675
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508, DOI 10.1007/978-1-4612-6318-0
- Edward Witten, The index of the Dirac operator in loop space, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986) Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp.ย 161โ181. MR 970288, DOI 10.1007/BFb0078045
- Don Zagier, Note on the Landweber-Stong elliptic genus, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986) Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp.ย 216โ224. MR 970290, DOI 10.1007/BFb0078047
Additional Information
- Ruizhi Huang
- Affiliation: Institute of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100190, Peopleโs Republic of China
- ORCID: 0000-0001-6250-4333
- Email: huangrz@amss.ac.cn
- Fei Han
- Affiliation: Department of Mathematics, National University of Singapore, Singapore 119076
- Email: mathanf@nus.edu.sg
- Haibao Duan
- Affiliation: Institute of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100190, Peopleโs Republic of China
- Email: dhb@math.ac.cn
- Received by editor(s): November 4, 2019
- Received by editor(s) in revised form: September 2, 2020
- Published electronically: January 27, 2021
- Additional Notes: The first author was supported by Postdoctoral International Exchange Program for Incoming Postdoctoral Students under Chinese Postdoctoral Council and Chinese Postdoctoral Science Foundation. He was also supported in part by Chinese Postdoctoral Science Foundation (Grant nos. 2018M631605 and 2019T120145), and National Natural Science Foundation of China (Grant no. 11801544).
The second author was partially supported by the grant AcRF R-146-000-263-114 from National University of Singapore.
The third author was partially supported by National Natural Science Foundation of China (Grant nos. 11131008 and 11661131004). - © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 3491-3533
- MSC (2020): Primary 53C27, 55R35, 57S15; Secondary 57R20, 22E67, 55R40
- DOI: https://doi.org/10.1090/tran/8311
- MathSciNet review: 4237954