Infinite energy solutions for weakly damped quintic wave equations in $\mathbb {R}^3$
HTML articles powered by AMS MathViewer
- by Xinyu Mei, Anton Savostianov, Chunyou Sun and Sergey Zelik PDF
- Trans. Amer. Math. Soc. 374 (2021), 3093-3129 Request permission
Abstract:
The paper gives a comprehensive study of infinite-energy solutions and their long-time behavior for semi-linear weakly damped wave equations in $\mathbb {R}^3$ with quintic nonlinearities. This study includes global well-posedness of the so-called Shatah-Struwe solutions, their dissipativity, the existence of a locally compact global attractors (in the uniformly local phase spaces) and their extra regularity.References
- Frédéric Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains, J. Differential Equations 83 (1990), no. 1, 85–108. MR 1031379, DOI 10.1016/0022-0396(90)90070-6
- José Arrieta, Alexandre N. Carvalho, and Jack K. Hale, A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations 17 (1992), no. 5-6, 841–866. MR 1177295, DOI 10.1080/03605309208820866
- Jose M. Arrieta, Anibal Rodriguez-Bernal, Jan W. Cholewa, and Tomasz Dlotko, Linear parabolic equations in locally uniform spaces, Math. Models Methods Appl. Sci. 14 (2004), no. 2, 253–293. MR 2040897, DOI 10.1142/S0218202504003234
- A. V. Babin and M. I. Vishik, Attractors of evolution equations, Studies in Mathematics and its Applications, vol. 25, North-Holland Publishing Co., Amsterdam, 1992. Translated and revised from the 1989 Russian original by Babin. MR 1156492, DOI 10.1016/S0168-2024(08)70270-4
- A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations in an unbounded domain, Proc. Roy. Soc. Edinburgh Sect. A 116 (1990), no. 3-4, 221–243. MR 1084733, DOI 10.1017/S0308210500031498
- Hajer Bahouri, Jean-Yves Chemin, and Raphaël Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343, Springer, Heidelberg, 2011. MR 2768550, DOI 10.1007/978-3-642-16830-7
- Hajer Bahouri and Patrick Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math. 121 (1999), no. 1, 131–175. MR 1705001, DOI 10.1353/ajm.1999.0001
- J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst. 10 (2004), no. 1-2, 31–52. Partial differential equations and applications. MR 2026182, DOI 10.3934/dcds.2004.10.31
- Matthew D. Blair, Hart F. Smith, and Christopher D. Sogge, Strichartz estimates for the wave equation on manifolds with boundary, Ann. Inst. H. Poincaré C Anal. Non Linéaire 26 (2009), no. 5, 1817–1829. MR 2566711, DOI 10.1016/j.anihpc.2008.12.004
- Nicolas Burq, Gilles Lebeau, and Fabrice Planchon, Global existence for energy critical waves in 3-D domains, J. Amer. Math. Soc. 21 (2008), no. 3, 831–845. MR 2393429, DOI 10.1090/S0894-0347-08-00596-1
- Nicolas Burq and Fabrice Planchon, Global existence for energy critical waves in 3-D domains: Neumann boundary conditions, Amer. J. Math. 131 (2009), no. 6, 1715–1742. MR 2567505, DOI 10.1353/ajm.0.0084
- Vladimir V. Chepyzhov and Mark I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl. (9) 76 (1997), no. 10, 913–964. MR 1489945, DOI 10.1016/S0021-7824(97)89978-3
- Vladimir V. Chepyzhov and Mark I. Vishik, Attractors for equations of mathematical physics, American Mathematical Society Colloquium Publications, vol. 49, American Mathematical Society, Providence, RI, 2002. MR 1868930, DOI 10.1051/cocv:2002056
- Monica Conti and Vittorino Pata, On the regularity of global attractors, Discrete Contin. Dyn. Syst. 25 (2009), no. 4, 1209–1217. MR 2552136, DOI 10.3934/dcds.2009.25.1209
- M. A. Efendiev and S. V. Zelik, The attractor for a nonlinear reaction-diffusion system in an unbounded domain, Comm. Pure Appl. Math. 54 (2001), no. 6, 625–688. MR 1815444, DOI 10.1002/cpa.1011
- M. Efendiev, A. Miranville, and S. Zelik, Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2004), no. 2044, 1107–1129. MR 2133858, DOI 10.1098/rspa.2003.1182
- M. A. Efendiev and S. V. Zelik, Upper and lower bounds for the Kolmogorov entropy of the attractor for the RDE in an unbounded domain, J. Dynam. Differential Equations 14 (2002), no. 2, 369–403. MR 1901023, DOI 10.1023/A:1015130904414
- Eduard Feireisl, Bounded, locally compact global attractors for semilinear damped wave equations on $\mathbf R^N$, Differential Integral Equations 9 (1996), no. 5, 1147–1156. MR 1392099
- Eduard Feireisl, Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent, Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), no. 5, 1051–1062. MR 1361632, DOI 10.1017/S0308210500022630
- Manoussos G. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. of Math. (2) 132 (1990), no. 3, 485–509. MR 1078267, DOI 10.2307/1971427
- Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 941371, DOI 10.1090/surv/025
- Varga Kalantarov, Anton Savostianov, and Sergey Zelik, Attractors for damped quintic wave equations in bounded domains, Ann. Henri Poincaré 17 (2016), no. 9, 2555–2584. MR 3535872, DOI 10.1007/s00023-016-0480-y
- L. V. Kapitanskiĭ, The Cauchy problem for the semilinear wave equation. I, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 163 (1987), no. Kraev. Zadachi Mat. Fiz. i Smezhn. Vopr. Teor. Funktsiĭ 19, 76–104, 188 (Russian, with English summary); English transl., J. Soviet Math. 49 (1990), no. 5, 1166–1186. MR 918943, DOI 10.1007/BF02208713
- L. V. Kapitanskiĭ, The Cauchy problem for the semilinear wave equation. II, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 182 (1990), no. Kraev. Zadachi Mat. Fiz. i Smezh. Voprosy Teor. Funktsiĭ. 21, 38–85, 171 (Russian, with English summary); English transl., J. Soviet Math. 62 (1992), no. 3, 2746–2777. MR 1064097, DOI 10.1007/BF01671000
- Lev Kapitanski, Global and unique weak solutions of nonlinear wave equations, Math. Res. Lett. 1 (1994), no. 2, 211–223. MR 1266760, DOI 10.4310/MRL.1994.v1.n2.a9
- Lev Kapitanski, Minimal compact global attractor for a damped semilinear wave equation, Comm. Partial Differential Equations 20 (1995), no. 7-8, 1303–1323. MR 1335752, DOI 10.1080/03605309508821133
- A. Kolmogorov and V. Tikhomirov, $\varepsilon$–entropy and $\varepsilon$–capacity of sets in functional spaces, In: Selected works of A. N. Kolmogorov, vol. III, ed., Dordrecht: Kluver, 1993.
- O. A. Ladyzhenskaya, Attractors of nonlinear evolution problems with dissipation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 152 (1986), no. Kraev. Zadachi Mat. Fiz. i Smezhnye Vopr. Teor. Funktsiĭ18, 72–85, 182 (Russian, with English summary); English transl., J. Soviet Math. 40 (1988), no. 5, 632–640. MR 869244, DOI 10.1007/BF01094189
- P. G. Lemarié-Rieusset, Recent developments in the Navier-Stokes problem, Chapman & Hall/CRC Research Notes in Mathematics, vol. 431, Chapman & Hall/CRC, Boca Raton, FL, 2002. MR 1938147, DOI 10.1201/9781420035674
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969 (French). MR 0259693
- Xinyu Mei and Chunyou Sun, Uniform attractors for a weakly damped wave equation with sup-cubic nonlinearity, Appl. Math. Lett. 95 (2019), 179–185. MR 3941064, DOI 10.1016/j.aml.2019.04.003
- Martin Michálek, Dalibor Pražák, and Jakub Slavík, Semilinear damped wave equation in locally uniform spaces, Commun. Pure Appl. Anal. 16 (2017), no. 5, 1673–1695. MR 3661796, DOI 10.3934/cpaa.2017080
- Alexander Mielke and Guido Schneider, Attractors for modulation equations on unbounded domains—existence and comparison, Nonlinearity 8 (1995), no. 5, 743–768. MR 1355041, DOI 10.1088/0951-7715/8/5/006
- A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, Handbook of differential equations: evolutionary equations. Vol. IV, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008, pp. 103–200. MR 2508165, DOI 10.1016/S1874-5717(08)00003-0
- Ioana Moise, Ricardo Rosa, and Xiaoming Wang, Attractors for non-compact semigroups via energy equations, Nonlinearity 11 (1998), no. 5, 1369–1393. MR 1644413, DOI 10.1088/0951-7715/11/5/012
- Vittorino Pata and Sergey Zelik, A remark on the damped wave equation, Commun. Pure Appl. Anal. 5 (2006), no. 3, 609–614. MR 2217604, DOI 10.3934/cpaa.2006.5.611
- Anton Savostianov, Strichartz estimates and smooth attractors for a sub-quintic wave equation with fractional damping in bounded domains, Adv. Differential Equations 20 (2015), no. 5-6, 495–530. MR 3327705
- Anton Savostianov, Infinite energy solutions for critical wave equation with fractional damping in unbounded domains, Nonlinear Anal. 136 (2016), 136–167. MR 3474408, DOI 10.1016/j.na.2016.02.016
- A. K. Savostianov and S. V. Zelik, Uniform attractors for measure-driven quintic wave equations, Uspekhi Mat. Nauk 75 (2020), no. 2(452), 61–132 (Russian, with Russian summary); English transl., Russian Math. Surveys 75 (2020), no. 2, 253–320. MR 4081969, DOI 10.4213/rm9932
- Jalal Shatah and Michael Struwe, Regularity results for nonlinear wave equations, Ann. of Math. (2) 138 (1993), no. 3, 503–518. MR 1247991, DOI 10.2307/2946554
- Jalal Shatah and Michael Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices 7 (1994), 303ff., approx. 7 pp.}, issn=1073-7928, review= MR 1283026, doi=10.1155/S1073792894000346, DOI 10.1155/S1073792894000346
- Christopher D. Sogge, Lectures on non-linear wave equations, 2nd ed., International Press, Boston, MA, 2008. MR 2455195
- Walter A. Strauss, Nonlinear wave equations, CBMS Regional Conference Series in Mathematics, vol. 73, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1989. MR 1032250
- Michael Struwe, Globally regular solutions to the $u^5$ Klein-Gordon equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), no. 3, 495–513 (1989). MR 1015805
- Terence Tao, Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. Local and global analysis. MR 2233925, DOI 10.1090/cbms/106
- Terence Tao, Spacetime bounds for the energy-critical nonlinear wave equation in three spatial dimensions, Dyn. Partial Differ. Equ. 3 (2006), no. 2, 93–110. MR 2227039, DOI 10.4310/DPDE.2006.v3.n2.a1
- Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, 2nd ed., Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997. MR 1441312, DOI 10.1007/978-1-4612-0645-3
- Hans Triebel, Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library, vol. 18, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503903
- Meihua Yang and Chunyou Sun, Dynamics of strongly damped wave equations in locally uniform spaces: attractors and asymptotic regularity, Trans. Amer. Math. Soc. 361 (2009), no. 2, 1069–1101. MR 2452835, DOI 10.1090/S0002-9947-08-04680-1
- Sergey Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent, Commun. Pure Appl. Anal. 3 (2004), no. 4, 921–934. MR 2106304, DOI 10.3934/cpaa.2004.3.921
- Sergey Zelik, Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities, Discrete Contin. Dyn. Syst. 11 (2004), no. 2-3, 351–0392. MR 2083423, DOI 10.3934/dcds.2004.11.351
- S. V. Zelik, Attractors of reaction-diffusion systems in unbounded domains and their spatial complexity, Comm. Pure Appl. Math. 56 (2003), no. 5, 584–637. MR 1953652, DOI 10.1002/cpa.10068
- S. V. Zelik, The attractor for a nonlinear reaction-diffusion system in the unbounded domain and Kolmogorov’s $\epsilon$-entropy, Math. Nachr. 232 (2001), 129–179. MR 1871475, DOI 10.1002/1522-2616(200112)232:1<129::AID-MANA129>3.3.CO;2-K
- S. V. Zelik, The attractor for a nonlinear hyperbolic equation in the unbounded domain, Discrete Contin. Dynam. Systems 7 (2001), no. 3, 593–641. MR 1815770, DOI 10.3934/dcds.2001.7.593
- S. V. Zelik, Multiparameter semigroups and attractors of reaction-diffusion equations in $\Bbb R^n$, Tr. Mosk. Mat. Obs. 65 (2004), 114–174 (Russian, with Russian summary); English transl., Trans. Moscow Math. Soc. (2004), 105–160. MR 2193438, DOI 10.1090/s0077-1554-04-00145-1
Additional Information
- Xinyu Mei
- Affiliation: School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, People’s Republic of China
- Email: meixy13@lzu.edu.cn
- Anton Savostianov
- Affiliation: Department of Mathematics, Uppsala University, Uppsala 75106, Sweden
- MR Author ID: 1060930
- ORCID: 0000-0001-5581-8414
- Email: anton.savostianov@math.uu.se
- Chunyou Sun
- Affiliation: School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, People’s Republic of China
- ORCID: 0000-0003-3770-7651
- Email: sunchy@lzu.edu.cn
- Sergey Zelik
- Affiliation: School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, People’s Republic of China; Department of Mathematics, University of Surrey, Guildford GU2 7XH, United Kingdom
- MR Author ID: 357918
- Email: s.zelik@surrey.ac.uk
- Received by editor(s): April 30, 2020
- Published electronically: March 2, 2021
- Additional Notes: This work was partially supported by the RSF grant 19-71-30004 as well as the EPSRC grant EP/P024920/1 and NSFC grants No. 11471148, 11522109, 11871169.
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 3093-3129
- MSC (2020): Primary 35B40, 35B45, 35L70
- DOI: https://doi.org/10.1090/tran/8317
- MathSciNet review: 4237944