On compact subsets of Sobolev spaces on manifolds
HTML articles powered by AMS MathViewer
- by Leszek Skrzypczak and Cyril Tintarev PDF
- Trans. Amer. Math. Soc. 374 (2021), 3761-3777 Request permission
Abstract:
The paper considers compactness of Sobolev embeddings of non-compact manifolds, restricted to subsets (typically subspaces) defined either by conditions of symmetry (or quasisymmetry) relative to actions of compact groups, or by restriction in the number of variables, i.e. consisting of functions of the form $f\circ \varphi$ with a fixed $\varphi$. The manifolds are assumed to satisfy general common conditions under which Sobolev embeddings exist. We provide sufficient conditions for compactness of the embeddings, which in many situations are also necessary.References
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Haim Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011. MR 2759829, DOI 10.1007/978-0-387-70914-7
- Peter Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 2, 213–230. MR 683635, DOI 10.24033/asens.1426
- Isaac Chavel, Riemannian geometry—a modern introduction, Cambridge Tracts in Mathematics, vol. 108, Cambridge University Press, Cambridge, 1993. MR 1271141
- C. Farkas, A. Kristalu, A. Mester, Compact Sobolev embeddings on non-compact manifolds via orbit expansions of isometry groups, arXiv:2010.06282.
- Herbert Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418–491. MR 110078, DOI 10.1090/S0002-9947-1959-0110078-1
- S. Gallot, D. Hulin, and J. Lafontaine, Riemannian geometry, Universitext, Springer-Verlag, Berlin, 1987. MR 909697, DOI 10.1007/978-3-642-97026-9
- Przemysław Górka, Looking for compactness in Sobolev spaces on noncompact metric spaces, Ann. Acad. Sci. Fenn. Math. 43 (2018), no. 1, 531–540. MR 3753192, DOI 10.5186/aasfm.2018.4332
- Nadine Große and Cornelia Schneider, Sobolev spaces on Riemannian manifolds with bounded geometry: general coordinates and traces, Math. Nachr. 286 (2013), no. 16, 1586–1613. MR 3126616, DOI 10.1002/mana.201300007
- Emmanuel Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, vol. 5, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. MR 1688256
- Emmanuel Hebey and Michel Vaugon, Sobolev spaces in the presence of symmetries, J. Math. Pures Appl. (9) 76 (1997), no. 10, 859–881. MR 1489942, DOI 10.1016/S0021-7824(97)89975-8
- Pierre-Louis Lions, Symétrie et compacité dans les espaces de Sobolev, J. Functional Analysis 49 (1982), no. 3, 315–334 (French, with English summary). MR 683027, DOI 10.1016/0022-1236(82)90072-6
- P. Maheux and L. Saloff-Coste, Analyse sur les boules d’un opérateur sous-elliptique, Math. Ann. 303 (1995), no. 4, 713–740 (French). MR 1359957, DOI 10.1007/BF01461013
- M. A. Shubin, Spectral theory of elliptic operators on noncompact manifolds, Astérisque 207 (1992), 5, 35–108. Méthodes semi-classiques, Vol. 1 (Nantes, 1991). MR 1205177
- Winfried Sickel and Leszek Skrzypczak, Subradial functions and compact embeddings, Proc. Steklov Inst. Math. 284 (2014), no. 1, 216–234. Reprint of Tr. Mat. Inst. Steklova 284 (2014), 224–242. MR 3479977, DOI 10.1134/S0081543814010167
- Leszek Skrzypczak, Atomic decompositions on manifolds with bounded geometry, Forum Math. 10 (1998), no. 1, 19–38. MR 1490136, DOI 10.1515/form.10.1.19
- Leszek Skrzypczak, Rotation invariant subspaces of Besov and Triebel-Lizorkin space: compactness of embeddings, smoothness and decay of functions, Rev. Mat. Iberoamericana 18 (2002), no. 2, 267–299. MR 1949829, DOI 10.4171/RMI/319
- Leszek Skrzypczak, Heat extensions, optimal atomic decompositions and Sobolev embeddings in presence of symmetries on manifolds, Math. Z. 243 (2003), no. 4, 745–773. MR 1974581, DOI 10.1007/s00209-002-0465-z
- Leszek Skrzypczak and Cyril Tintarev, A geometric criterion for compactness of invariant subspaces, Arch. Math. (Basel) 101 (2013), no. 3, 259–268. MR 3101775, DOI 10.1007/s00013-013-0554-8
- Elias M. Stein and Stephen Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239–1295. MR 508453, DOI 10.1090/S0002-9904-1978-14554-6
- Walter A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149–162. MR 454365, DOI 10.1007/BF01626517
Additional Information
- Leszek Skrzypczak
- Affiliation: Faculty of Mathematics & Computer Science, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 4, 61-614 Poznań, Poland
- MR Author ID: 292730
- ORCID: 0000-0002-7484-2900
- Email: lskrzyp@amu.edu.pl
- Cyril Tintarev
- Affiliation: Technion – Israel Institute of Technology, Haifa 32000, Israel
- MR Author ID: 172775
- ORCID: 0000-0002-7484-2900
- Email: tammouz@gmail.com
- Received by editor(s): August 5, 2020
- Received by editor(s) in revised form: October 22, 2020
- Published electronically: March 2, 2021
- Additional Notes: The first author was supported by National Science Center, Poland, Grant no. 2013/10/A/ST1/00091.
The second author expresses his gratitude to the first author and the Faculty of Mathematics & Computer Science of Adam Mickiewicz University, as well as to Simeon Reich, Yehuda Pinchover and the Faculty of Mathematics at Technion, for their kind hospitality. The latter stay was as a Lady Davis Visiting Professor. - © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 3761-3777
- MSC (2020): Primary 46B50, 46E35; Secondary 46N20
- DOI: https://doi.org/10.1090/tran/8322
- MathSciNet review: 4237962