Higgs bundles over non-compact Gauduchon manifolds
Authors:
Chuanjing Zhang, Pan Zhang and Xi Zhang
Journal:
Trans. Amer. Math. Soc. 374 (2021), 3735-3759
MSC (2020):
Primary 53C07, 14J60, 32Q15
DOI:
https://doi.org/10.1090/tran/8323
Published electronically:
January 21, 2021
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper, we prove a generalized Donaldson-Uhlenbeck-Yau theorem on Higgs bundles over a class of non-compact Gauduchon manifolds.
- [1] Luis Álvarez-Cónsul and Oscar García-Prada, Hitchin-Kobayashi correspondence, quivers, and vortices, Comm. Math. Phys. 238 (2003), no. 1-2, 1–33. {1989667}, https://doi.org/10.1007/s00220-003-0853-1
- [2] Olivier Biquard, Sur les fibrés paraboliques sur une surface complexe, J. London Math. Soc. (2) 53 (1996), no. 2, 302–316 (French). {1373062}, https://doi.org/10.1112/jlms/53.2.302
- [3] Indranil Biswas, Stable Higgs bundles on compact Gauduchon manifolds, C. R. Math. Acad. Sci. Paris 349 (2011), no. 1-2, 71–74 (English, with English and French summaries). {2755700}, https://doi.org/10.1016/j.crma.2010.11.010
- [4] Indranil Biswas, John Loftin, and Matthias Stemmler, The vortex equation on affine manifolds, Trans. Amer. Math. Soc. 366 (2014), no. 7, 3925–3941. {3192624}, https://doi.org/10.1090/S0002-9947-2014-06152-7
- [5] Indranil Biswas and Georg Schumacher, Yang-Mills equation for stable Higgs sheaves, Internat. J. Math. 20 (2009), no. 5, 541–556. {2526306}, https://doi.org/10.1142/S0129167X09005406
- [6] Steven B. Bradlow, Vortices in holomorphic line bundles over closed Kähler manifolds, Comm. Math. Phys. 135 (1990), no. 1, 1–17. {1086749}
- [7] Ugo Bruzzo and Beatriz Graña Otero, Metrics on semistable and numerically effective Higgs bundles, J. Reine Angew. Math. 612 (2007), 59–79. {2364074}, https://doi.org/10.1515/CRELLE.2007.084
- [8] N. P. Buchdahl, Hermitian-Einstein connections and stable vector bundles over compact complex surfaces, Math. Ann. 280 (1988), no. 4, 625–648. {939923}, https://doi.org/10.1007/BF01450081
- [9] S. A. H. Cardona, Approximate Hermitian-Yang-Mills structures and semistability for Higgs bundles. I: generalities and the one-dimensional case, Ann. Global Anal. Geom. 42 (2012), no. 3, 349–370. {2972618}, https://doi.org/10.1007/s10455-012-9316-2
- [10] Georgios D. Daskalopoulos and Richard A. Wentworth, Convergence properties of the Yang-Mills flow on Kähler surfaces, J. Reine Angew. Math. 575 (2004), 69–99. {2097548}, https://doi.org/10.1515/crll.2004.083
- [11] S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985), no. 1, 1–26. {765366}, https://doi.org/10.1112/plms/s3-50.1.1
- [12] S. K. Donaldson, Boundary value problems for Yang-Mills fields, J. Geom. Phys. 8 (1992), no. 1-4, 89–122. {1165874}, https://doi.org/10.1016/0393-0440(92)90044-2
- [13] Richard S. Hamilton, Harmonic maps of manifolds with boundary, Lecture Notes in Mathematics, Vol. 471, Springer-Verlag, Berlin-New York, 1975. {0482822}
- [14] N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), no. 1, 59–126. {887284}, https://doi.org/10.1112/plms/s3-55.1.59
- [15] Adam Jacob, Existence of approximate Hermitian-Einstein structures on semi-stable bundles, Asian J. Math. 18 (2014), no. 5, 859–883. {3287006}, https://doi.org/10.4310/AJM.2014.v18.n5.a5
- [16] Adam Jacob, Stable Higgs bundles and Hermitian-Einstein metrics on non-Kähler manifolds, Analysis, complex geometry, and mathematical physics: in honor of Duong H. Phong, Contemp. Math., vol. 644, Amer. Math. Soc., Providence, RI, 2015, pp. 117–140. {3372463}, https://doi.org/10.1090/conm/644/12781
- [17] Jürgen Jost and Kang Zuo, Harmonic maps and 𝑆𝑙(𝑟,𝐶)-representations of fundamental groups of quasiprojective manifolds, J. Algebraic Geom. 5 (1996), no. 1, 77–106. {1358035}
- [18] Shoshichi Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, vol. 15, Princeton University Press, Princeton, NJ; Princeton University Press, Princeton, NJ, 1987. Kanô Memorial Lectures, 5. {909698}
- [19] Jiayu Li and M. S. Narasimhan, Hermitian-Einstein metrics on parabolic stable bundles, Acta Math. Sin. (Engl. Ser.) 15 (1999), no. 1, 93–114. {1701135}, https://doi.org/10.1007/s10114-999-0062-8
- [20] Jiayu Li and Xi Zhang, Existence of approximate Hermitian-Einstein structures on semi-stable Higgs bundles, Calc. Var. Partial Differential Equations 52 (2015), no. 3-4, 783–795. {3311914}, https://doi.org/10.1007/s00526-014-0733-x
- [21] Jiayu Li, Chuanjing Zhang, and Xi Zhang, Semi-stable Higgs sheaves and Bogomolov type inequality, Calc. Var. Partial Differential Equations 56 (2017), no. 3, Paper No. 81, 33. {3649506}, https://doi.org/10.1007/s00526-017-1174-0
- [22] Jiayu Li, Chuanjing Zhang, and Xi Zhang, The limit of the Hermitian-Yang-Mills flow on reflexive sheaves, Adv. Math. 325 (2018), 165–214. {3742589}, https://doi.org/10.1016/j.aim.2017.11.029
- [23] Jun Li and Shing-Tung Yau, Hermitian-Yang-Mills connection on non-Kähler manifolds, Mathematical aspects of string theory (San Diego, Calif., 1986) Adv. Ser. Math. Phys., vol. 1, World Sci. Publishing, Singapore, 1987, pp. 560–573. {915839}
- [24] M. Lübke and A. Teleman, The universal Kobayashi-Hitchin correspondence on Hermitian manifolds, Mem. Amer. Math. Soc. 183 (2006), no. 863, vi+97. {2254074}, https://doi.org/10.1090/memo/0863
- [25] Martin Lübke and Andrei Teleman, The Kobayashi-Hitchin correspondence, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. {1370660}
- [26] Takuro Mochizuki, Kobayashi-Hitchin correspondence for tame harmonic bundles and an application, Astérisque 309 (2006), viii+117 (English, with English and French summaries). {2310103}
- [27] Takuro Mochizuki, Kobayashi-Hitchin correspondence for tame harmonic bundles. II, Geom. Topol. 13 (2009), no. 1, 359–455. {2469521}, https://doi.org/10.2140/gt.2009.13.359
- [28] Takuro Mochizuki, Kobayashi-Hitchin correspondence for analytically stable bundles, Trans. Amer. Math. Soc. 373 (2020), no. 1, 551–596. {4042885}, https://doi.org/10.1090/tran/7956
- [29] Yanci Nie and Xi Zhang, Semistable Higgs bundles over compact Gauduchon manifolds, J. Geom. Anal. 28 (2018), no. 1, 627–642. {3745874}, https://doi.org/10.1007/s12220-017-9835-y
- [30] Lei Ni and Huaiyu Ren, Hermitian-Einstein metrics for vector bundles on complete Kähler manifolds, Trans. Amer. Math. Soc. 353 (2001), no. 2, 441–456. {1694377}, https://doi.org/10.1090/S0002-9947-00-02549-6
- [31] M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. (2) 82 (1965), 540–567. {184252}, https://doi.org/10.2307/1970710
- [32] Carlos T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988), no. 4, 867–918. {944577}, https://doi.org/10.1090/S0894-0347-1988-0944577-9
- [33] Carlos T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95. {1179076}
- [34] M.E. Taylor, Partial differential equations I, Applied Mathematical Sciences, Vol. 115, Springer-Verlag, New York, Berlin, Heidelberg.
- [35] K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S257–S293. Frontiers of the mathematical sciences: 1985 (New York, 1985). {861491}, https://doi.org/10.1002/cpa.3160390714
- [36] Yue Wang and Xi Zhang, Twisted holomorphic chains and vortex equations over non-compact Kähler manifolds, J. Math. Anal. Appl. 373 (2011), no. 1, 179–202. {2684469}, https://doi.org/10.1016/j.jmaa.2010.06.051
- [37] Xi Zhang, Hermitian-Einstein metrics on holomorphic vector bundles over Hermitian manifolds, J. Geom. Phys. 53 (2005), no. 3, 315–335. {2108533}, https://doi.org/10.1016/j.geomphys.2004.07.002
Retrieve articles in Transactions of the American Mathematical Society with MSC (2020): 53C07, 14J60, 32Q15
Retrieve articles in all journals with MSC (2020): 53C07, 14J60, 32Q15
Additional Information
Chuanjing Zhang
Affiliation:
School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, People’s Republic of China
Email:
chjzhang@mail.ustc.edu.cn
Pan Zhang
Affiliation:
School of Mathematical Sciences, Anhui University, Anhui 230601, People’s Republic of China
Email:
panzhang20100@ahu.edu.cn
Xi Zhang
Affiliation:
School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, People’s Republic of China
Email:
mathzx@ustc.edu.cn
DOI:
https://doi.org/10.1090/tran/8323
Keywords:
Higgs bundles,
Gauduchon manifold,
approximate Hermitian-Einstein structure,
Hermitian-Einstein metric,
non-compact
Received by editor(s):
April 30, 2018
Received by editor(s) in revised form:
July 16, 2018, August 9, 2020, and October 13, 2020
Published electronically:
January 21, 2021
Additional Notes:
The first author and the second author are both co-first authors, the third author is the corresponding author. The authors were partially supported by NSF in China No.11625106, 11801535 and 11721101. The first author was also supported by the China Postdoctoral Science Foundation (No.2018M642515) and the Fundamental Research Funds for the Central Universities. The second author was supported by the Natural Science Foundation of Universities of Anhui Province. The research was partially supported by the project “Analysis and Geometry on Bundle” of Ministry of Science and Technology of the People’s Republic of China, No. SQ2020YFA070080.
Article copyright:
© Copyright 2021
American Mathematical Society