Higgs bundles over non-compact Gauduchon manifolds
HTML articles powered by AMS MathViewer
- by Chuanjing Zhang, Pan Zhang and Xi Zhang PDF
- Trans. Amer. Math. Soc. 374 (2021), 3735-3759 Request permission
Abstract:
In this paper, we prove a generalized Donaldson-Uhlenbeck-Yau theorem on Higgs bundles over a class of non-compact Gauduchon manifolds.References
- Luis Álvarez-Cónsul and Oscar García-Prada, Hitchin-Kobayashi correspondence, quivers, and vortices, Comm. Math. Phys. 238 (2003), no. 1-2, 1–33. MR 1989667, DOI 10.1007/s00220-003-0853-1
- Olivier Biquard, Sur les fibrés paraboliques sur une surface complexe, J. London Math. Soc. (2) 53 (1996), no. 2, 302–316 (French). MR 1373062, DOI 10.1112/jlms/53.2.302
- Indranil Biswas, Stable Higgs bundles on compact Gauduchon manifolds, C. R. Math. Acad. Sci. Paris 349 (2011), no. 1-2, 71–74 (English, with English and French summaries). MR 2755700, DOI 10.1016/j.crma.2010.11.010
- Indranil Biswas, John Loftin, and Matthias Stemmler, The vortex equation on affine manifolds, Trans. Amer. Math. Soc. 366 (2014), no. 7, 3925–3941. MR 3192624, DOI 10.1090/S0002-9947-2014-06152-7
- Indranil Biswas and Georg Schumacher, Yang-Mills equation for stable Higgs sheaves, Internat. J. Math. 20 (2009), no. 5, 541–556. MR 2526306, DOI 10.1142/S0129167X09005406
- Steven B. Bradlow, Vortices in holomorphic line bundles over closed Kähler manifolds, Comm. Math. Phys. 135 (1990), no. 1, 1–17. MR 1086749, DOI 10.1007/BF02097654
- Ugo Bruzzo and Beatriz Graña Otero, Metrics on semistable and numerically effective Higgs bundles, J. Reine Angew. Math. 612 (2007), 59–79. MR 2364074, DOI 10.1515/CRELLE.2007.084
- N. P. Buchdahl, Hermitian-Einstein connections and stable vector bundles over compact complex surfaces, Math. Ann. 280 (1988), no. 4, 625–648. MR 939923, DOI 10.1007/BF01450081
- S. A. H. Cardona, Approximate Hermitian-Yang-Mills structures and semistability for Higgs bundles. I: generalities and the one-dimensional case, Ann. Global Anal. Geom. 42 (2012), no. 3, 349–370. MR 2972618, DOI 10.1007/s10455-012-9316-2
- Georgios D. Daskalopoulos and Richard A. Wentworth, Convergence properties of the Yang-Mills flow on Kähler surfaces, J. Reine Angew. Math. 575 (2004), 69–99. MR 2097548, DOI 10.1515/crll.2004.083
- S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985), no. 1, 1–26. MR 765366, DOI 10.1112/plms/s3-50.1.1
- S. K. Donaldson, Boundary value problems for Yang-Mills fields, J. Geom. Phys. 8 (1992), no. 1-4, 89–122. MR 1165874, DOI 10.1016/0393-0440(92)90044-2
- Richard S. Hamilton, Harmonic maps of manifolds with boundary, Lecture Notes in Mathematics, Vol. 471, Springer-Verlag, Berlin-New York, 1975. MR 0482822, DOI 10.1007/BFb0087227
- N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), no. 1, 59–126. MR 887284, DOI 10.1112/plms/s3-55.1.59
- Adam Jacob, Existence of approximate Hermitian-Einstein structures on semi-stable bundles, Asian J. Math. 18 (2014), no. 5, 859–883. MR 3287006, DOI 10.4310/AJM.2014.v18.n5.a5
- Adam Jacob, Stable Higgs bundles and Hermitian-Einstein metrics on non-Kähler manifolds, Analysis, complex geometry, and mathematical physics: in honor of Duong H. Phong, Contemp. Math., vol. 644, Amer. Math. Soc., Providence, RI, 2015, pp. 117–140. MR 3372463, DOI 10.1090/conm/644/12781
- Jürgen Jost and Kang Zuo, Harmonic maps and $\textrm {Sl}(r,\textbf {C})$-representations of fundamental groups of quasiprojective manifolds, J. Algebraic Geom. 5 (1996), no. 1, 77–106. MR 1358035
- Shoshichi Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, vol. 15, Princeton University Press, Princeton, NJ; Princeton University Press, Princeton, NJ, 1987. Kanô Memorial Lectures, 5. MR 909698, DOI 10.1515/9781400858682
- Jiayu Li and M. S. Narasimhan, Hermitian-Einstein metrics on parabolic stable bundles, Acta Math. Sin. (Engl. Ser.) 15 (1999), no. 1, 93–114. MR 1701135, DOI 10.1007/s10114-999-0062-8
- Jiayu Li and Xi Zhang, Existence of approximate Hermitian-Einstein structures on semi-stable Higgs bundles, Calc. Var. Partial Differential Equations 52 (2015), no. 3-4, 783–795. MR 3311914, DOI 10.1007/s00526-014-0733-x
- Jiayu Li, Chuanjing Zhang, and Xi Zhang, Semi-stable Higgs sheaves and Bogomolov type inequality, Calc. Var. Partial Differential Equations 56 (2017), no. 3, Paper No. 81, 33. MR 3649506, DOI 10.1007/s00526-017-1174-0
- Jiayu Li, Chuanjing Zhang, and Xi Zhang, The limit of the Hermitian-Yang-Mills flow on reflexive sheaves, Adv. Math. 325 (2018), 165–214. MR 3742589, DOI 10.1016/j.aim.2017.11.029
- Jun Li and Shing-Tung Yau, Hermitian-Yang-Mills connection on non-Kähler manifolds, Mathematical aspects of string theory (San Diego, Calif., 1986) Adv. Ser. Math. Phys., vol. 1, World Sci. Publishing, Singapore, 1987, pp. 560–573. MR 915839
- M. Lübke and A. Teleman, The universal Kobayashi-Hitchin correspondence on Hermitian manifolds, Mem. Amer. Math. Soc. 183 (2006), no. 863, vi+97. MR 2254074, DOI 10.1090/memo/0863
- Martin Lübke and Andrei Teleman, The Kobayashi-Hitchin correspondence, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. MR 1370660, DOI 10.1142/2660
- Takuro Mochizuki, Kobayashi-Hitchin correspondence for tame harmonic bundles and an application, Astérisque 309 (2006), viii+117 (English, with English and French summaries). MR 2310103
- Takuro Mochizuki, Kobayashi-Hitchin correspondence for tame harmonic bundles. II, Geom. Topol. 13 (2009), no. 1, 359–455. MR 2469521, DOI 10.2140/gt.2009.13.359
- Takuro Mochizuki, Kobayashi-Hitchin correspondence for analytically stable bundles, Trans. Amer. Math. Soc. 373 (2020), no. 1, 551–596. MR 4042885, DOI 10.1090/tran/7956
- Yanci Nie and Xi Zhang, Semistable Higgs bundles over compact Gauduchon manifolds, J. Geom. Anal. 28 (2018), no. 1, 627–642. MR 3745874, DOI 10.1007/s12220-017-9835-y
- Lei Ni and Huaiyu Ren, Hermitian-Einstein metrics for vector bundles on complete Kähler manifolds, Trans. Amer. Math. Soc. 353 (2001), no. 2, 441–456. MR 1694377, DOI 10.1090/S0002-9947-00-02549-6
- M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. (2) 82 (1965), 540–567. MR 184252, DOI 10.2307/1970710
- Carlos T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988), no. 4, 867–918. MR 944577, DOI 10.1090/S0894-0347-1988-0944577-9
- Carlos T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95. MR 1179076, DOI 10.1007/BF02699491
- M.E. Taylor, Partial differential equations I, Applied Mathematical Sciences, Vol. 115, Springer-Verlag, New York, Berlin, Heidelberg.
- K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S257–S293. Frontiers of the mathematical sciences: 1985 (New York, 1985). MR 861491, DOI 10.1002/cpa.3160390714
- Yue Wang and Xi Zhang, Twisted holomorphic chains and vortex equations over non-compact Kähler manifolds, J. Math. Anal. Appl. 373 (2011), no. 1, 179–202. MR 2684469, DOI 10.1016/j.jmaa.2010.06.051
- Xi Zhang, Hermitian-Einstein metrics on holomorphic vector bundles over Hermitian manifolds, J. Geom. Phys. 53 (2005), no. 3, 315–335. MR 2108533, DOI 10.1016/j.geomphys.2004.07.002
Additional Information
- Chuanjing Zhang
- Affiliation: School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, People’s Republic of China
- Email: chjzhang@mail.ustc.edu.cn
- Pan Zhang
- Affiliation: School of Mathematical Sciences, Anhui University, Anhui 230601, People’s Republic of China
- ORCID: 0000-0002-9462-9840
- Email: panzhang20100@ahu.edu.cn
- Xi Zhang
- Affiliation: School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, People’s Republic of China
- Email: mathzx@ustc.edu.cn
- Received by editor(s): April 30, 2018
- Received by editor(s) in revised form: July 16, 2018, August 9, 2020, and October 13, 2020
- Published electronically: January 21, 2021
- Additional Notes: The first author and the second author are both co-first authors, the third author is the corresponding author. The authors were partially supported by NSF in China No.11625106, 11801535 and 11721101. The first author was also supported by the China Postdoctoral Science Foundation (No.2018M642515) and the Fundamental Research Funds for the Central Universities. The second author was supported by the Natural Science Foundation of Universities of Anhui Province. The research was partially supported by the project “Analysis and Geometry on Bundle” of Ministry of Science and Technology of the People’s Republic of China, No. SQ2020YFA070080.
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 3735-3759
- MSC (2020): Primary 53C07, 14J60, 32Q15
- DOI: https://doi.org/10.1090/tran/8323
- MathSciNet review: 4237961