Weak Siegel-Weil formula for $\mathbb {M}_{2}(\mathbb {Q})$ and arithmetic on quaternions
HTML articles powered by AMS MathViewer
- by Tuoping Du PDF
- Trans. Amer. Math. Soc. 374 (2021), 3397-3426 Request permission
Abstract:
We prove a weak version of the Siegel-Weil formula on $\operatorname {SL}_2$ for the dual pair $(\operatorname {SL}_2, O_{2, 2})$, where $O_{2, 2}$ is the split orthogonal group. By this formula and the Siegel-Weil formula, we give explicit formulas for Hecke correspondence’s degree and average representation numbers over genus associated to Eichler orders. At last, we give explicit formulas for representations of a number as sums of three squares and four squares by local Whittaker functions, and it turns out that these functions are exactly the local factors of Hardy’s singular series.References
- Montserrat Alsina and Pilar Bayer, Quaternion orders, quadratic forms, and Shimura curves, CRM Monograph Series, vol. 22, American Mathematical Society, Providence, RI, 2004. MR 2038122, DOI 10.1090/crmm/022
- Paul T. Bateman, On the representations of a number as the sum of three squares, Trans. Amer. Math. Soc. 71 (1951), 70–101. MR 42438, DOI 10.1090/S0002-9947-1951-0042438-4
- R. Berndt and U. Kühn, On Kudla’s Green function for signature (2, 2), part I, preprint, arXiv:1205.6417, 2012.
- L. E. Dickson, Studies in the theory of numbers, Chicago, 1930.
- Tuoping Du and Tonghai Yang, Quaternions and Kudla’s matching principle, Math. Res. Lett. 20 (2013), no. 2, 367–383. MR 3151653, DOI 10.4310/MRL.2013.v20.n2.a12
- Wee Teck Gan, Yannan Qiu, and Shuichiro Takeda, The regularized Siegel-Weil formula (the second term identity) and the Rallis inner product formula, Invent. Math. 198 (2014), no. 3, 739–831. MR 3279536, DOI 10.1007/s00222-014-0509-0
- G. H. Hardy, On the representation of a number as the sum of any number of squares, and in particular of five or seven, Proc. London Math. Soc. 17 (1918), pp. xxii–xxiv (Records of proceedings at the meeting of March 14, 1918).
- G. H. Hardy, On the representation of a number as the sum of any number of squares, and in particular of five, Trans. Amer. Math. Soc. 21 (1920), no. 3, 255–284. MR 1501144, DOI 10.1090/S0002-9947-1920-1501144-7
- F. Hirzebruch and D. Zagier, Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus, Invent. Math. 36 (1976), 57–113. MR 453649, DOI 10.1007/BF01390005
- Martin L. Karel, Values of certain Whittaker functions on a $p$-adic reductive group, Illinois J. Math. 26 (1982), no. 4, 552–575. MR 674225
- Stephen S. Kudla, Splitting metaplectic covers of dual reductive pairs, Israel J. Math. 87 (1994), no. 1-3, 361–401. MR 1286835, DOI 10.1007/BF02773003
- Stephen S. Kudla, Integrals of Borcherds forms, Compositio Math. 137 (2003), no. 3, 293–349. MR 1988501, DOI 10.1023/A:1024127100993
- Stephen S. Kudla and John J. Millson, The theta correspondence and harmonic forms. II, Math. Ann. 277 (1987), no. 2, 267–314. MR 886423, DOI 10.1007/BF01457364
- Stephen S. Kudla and Stephen Rallis, On the Weil-Siegel formula, J. Reine Angew. Math. 387 (1988), 1–68. MR 946349, DOI 10.1515/crll.1988.391.65
- Stephen S. Kudla and Stephen Rallis, On the Weil-Siegel formula. II. The isotropic convergent case, J. Reine Angew. Math. 391 (1988), 65–84. MR 961164, DOI 10.1515/crll.1988.391.65
- Stephen S. Kudla and Stephen Rallis, A regularized Siegel-Weil formula: the first term identity, Ann. of Math. (2) 140 (1994), no. 1, 1–80. MR 1289491, DOI 10.2307/2118540
- Stephen S. Kudla, Michael Rapoport, and Tonghai Yang, Derivatives of Eisenstein series and Faltings heights, Compos. Math. 140 (2004), no. 4, 887–951. MR 2059224, DOI 10.1112/S0010437X03000459
- Stephen S. Kudla, Michael Rapoport, and Tonghai Yang, Modular forms and special cycles on Shimura curves, Annals of Mathematics Studies, vol. 161, Princeton University Press, Princeton, NJ, 2006. MR 2220359, DOI 10.1515/9781400837168
- Stephen S. Kudla and TongHai Yang, Eisenstein series for SL(2), Sci. China Math. 53 (2010), no. 9, 2275–2316. MR 2718827, DOI 10.1007/s11425-010-4097-1
- Toshitsune Miyake, Modular forms, Springer-Verlag, Berlin, 1989. Translated from the Japanese by Yoshitaka Maeda. MR 1021004, DOI 10.1007/3-540-29593-3
- Stephen Rallis, $L$-functions and the oscillator representation, Lecture Notes in Mathematics, vol. 1245, Springer-Verlag, Berlin, 1987. MR 887329, DOI 10.1007/BFb0077894
- S. Ramanujan, On certain trigonometrical sums and their applications in the theory of numbers, Trans. Cambridge Philos. Soc., 22 (1918), 259–276.
- Carl Ludwig Siegel, Über die analytische Theorie der quadratischen Formen, Ann. of Math. (2) 36 (1935), no. 3, 527–606 (German). MR 1503238, DOI 10.2307/1968644
- Nolan R. Wallach, Lie algebra cohomology and holomorphic continuation of generalized Jacquet integrals, Representations of Lie groups, Kyoto, Hiroshima, 1986, Adv. Stud. Pure Math., vol. 14, Academic Press, Boston, MA, 1988, pp. 123–151. MR 1039836, DOI 10.2969/aspm/01410123
- André Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964), 143–211 (French). MR 165033, DOI 10.1007/BF02391012
- A. Weil, Adeles and algebraic groups, vol. 84, 1986, pp. 321–326.
- André Weil, Sur la formule de Siegel dans la théorie des groupes classiques, Acta Math. 113 (1965), 1–87 (French). MR 223373, DOI 10.1007/BF02391774
Additional Information
- Tuoping Du
- Affiliation: Department of Mathematics, Southeast University, Nanjing, 211189, People’s Republic of China
- Email: dtp1982@163.com
- Received by editor(s): May 16, 2018
- Received by editor(s) in revised form: May 19, 2018, July 6, 2018, December 29, 2019, and July 31, 2020
- Published electronically: February 11, 2021
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 3397-3426
- MSC (2020): Primary 11R52, 11G18, 11F32, 11F41, 11S23
- DOI: https://doi.org/10.1090/tran/8324
- MathSciNet review: 4237951