Asymptotic $K$-soliton-like solutions of the Zakharov-Kuznetsov type equations
HTML articles powered by AMS MathViewer
- by Frédéric Valet PDF
- Trans. Amer. Math. Soc. 374 (2021), 3177-3213 Request permission
Abstract:
We study here the Zakharov-Kuznetsov equation in dimension $2$, $3$ and $4$ and the modified Zakharov-Kuznetsov equation in dimension $2$. Those equations admit solitons, characterized by their velocity and their shift. Given the parameters of $K$ solitons $R^k$ (with distinct velocities), we prove the existence and uniqueness of a multi-soliton $u$ such that \[ \| u(t) - \sum _{k=1}^K R^k(t) \|_{H^1} \to 0 \quad \text {as} \quad t \to +\infty . \] The convergence takes place in $H^s$ with an exponential rate for all $s \ge 0$. The construction is made by successive approximations of the multi-soliton. We use classical arguments to control of $H^1$-norms of the errors (inspired by Martel [Amer. J. Math. 127 (2005), pp. 1103–1140]), and introduce a new ingredient for the control of the $H^s$-norm in dimension $d\geq 2$, by a technique close to monotonicity.References
- H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), no. 4, 313–345. MR 695535, DOI 10.1007/BF00250555
- Debdeep Bhattacharya, Luiz Gustavo Farah, and Svetlana Roudenko, Global well-posedness for low regularity data in the 2d modified Zakharov-Kuznetsov equation, J. Differential Equations 268 (2020), no. 12, 7962–7997. MR 4079024, DOI 10.1016/j.jde.2019.11.092
- Vianney Combet, Multi-soliton solutions for the supercritical gKdV equations, Comm. Partial Differential Equations 36 (2011), no. 3, 380–419. MR 2763331, DOI 10.1080/03605302.2010.503770
- Raphaël Côte, Yvan Martel, and Frank Merle, Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations, Rev. Mat. Iberoam. 27 (2011), no. 1, 273–302. MR 2815738, DOI 10.4171/RMI/636
- Raphaël Côte and Claudio Muñoz, Multi-solitons for nonlinear Klein-Gordon equations, Forum Math. Sigma 2 (2014), Paper No. e15, 38. MR 3264254, DOI 10.1017/fms.2014.13
- Raphaël Côte, Claudio Muñoz, Didier Pilod, and Gideon Simpson, Asymptotic stability of high-dimensional Zakharov-Kuznetsov solitons, Arch. Ration. Mech. Anal. 220 (2016), no. 2, 639–710. MR 3461359, DOI 10.1007/s00205-015-0939-x
- Raphaël Cote and Frédéric Valet, Polynomial growth of high Sobolev norms of solutions to the Zakharov-Kuznetsov equation, 2019.
- Raphaël Côte, Yvan Martel, and Xu Yuan, Long-time asymptotics of the one-dimensional damped nonlinear Klein-Gordon equation, 2020.
- Anne de Bouard, Stability and instability of some nonlinear dispersive solitary waves in higher dimension, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), no. 1, 89–112. MR 1378834, DOI 10.1017/S0308210500030614
- A. V. Faminskiĭ, The Cauchy problem for the Zakharov-Kuznetsov equation, Differentsial′nye Uravneniya 31 (1995), no. 6, 1070–1081, 1103 (Russian, with Russian summary); English transl., Differential Equations 31 (1995), no. 6, 1002–1012. MR 1383936
- Luiz Gustavo Farah, Justin Holmer, and Svetlana Roudenko, On instability of solitons in the 2d cubic Zakharov-Kuznetsov equation, São Paulo J. Math. Sci. 13 (2019), no. 2, 435–446. MR 4025576, DOI 10.1007/s40863-019-00142-7
- Luiz Gustavo Farah, Justin Holmer, Svetlana Roudenko, and Kai Yang, Blow-up in finite or infinite time of the 2D cubic Zakharov-Kuznetsov equation, 2018.
- Eduard Feireisl, Finite energy travelling waves for nonlinear damped wave equations, Quart. Appl. Math. 56 (1998), no. 1, 55–70. MR 1604876, DOI 10.1090/qam/1604876
- Axel Grünrock and Sebastian Herr, The Fourier restriction norm method for the Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst. 34 (2014), no. 5, 2061–2068. MR 3124726, DOI 10.3934/dcds.2014.34.2061
- Daniel Han-Kwan, From Vlasov-Poisson to Korteweg–de Vries and Zakharov-Kuznetsov, Comm. Math. Phys. 324 (2013), no. 3, 961–993. MR 3123542, DOI 10.1007/s00220-013-1825-8
- Sebastian Herr and Shinya Kinoshita, The Zakharov-Kuznetsov equation in high dimensions: Small initial data of critical regularity, 2020.
- Jacek Jendrej, Michał Kowalczyk, and Andrew Lawrie, Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line, 2020.
- Shinya Kinoshita, Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in 2D, Discrete Contin. Dyn. Syst. 38 (2018), no. 3, 1479–1504. MR 3809003, DOI 10.3934/dcds.2018061
- Man Kam Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\textbf {R}^n$, Arch. Rational Mech. Anal. 105 (1989), no. 3, 243–266. MR 969899, DOI 10.1007/BF00251502
- David Lannes, Felipe Linares, and Jean-Claude Saut, The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation, Studies in phase space analysis with applications to PDEs, Progr. Nonlinear Differential Equations Appl., vol. 84, Birkhäuser/Springer, New York, 2013, pp. 181–213. MR 3185896, DOI 10.1007/978-1-4614-6348-1_{1}0
- Felipe Linares and Ademir Pastor, Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation, SIAM J. Math. Anal. 41 (2009), no. 4, 1323–1339. MR 2540268, DOI 10.1137/080739173
- Felipe Linares and Ademir Pastor, Local and global well-posedness for the 2D generalized Zakharov-Kuznetsov equation, J. Funct. Anal. 260 (2011), no. 4, 1060–1085. MR 2747014, DOI 10.1016/j.jfa.2010.11.005
- Y. Martel and F. Merle, Instability of solitons for the critical generalized Korteweg-de Vries equation, Geom. Funct. Anal. 11 (2001), no. 1, 74–123. MR 1829643, DOI 10.1007/PL00001673
- Yvan Martel, Asymptotic $N$-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math. 127 (2005), no. 5, 1103–1140. MR 2170139, DOI 10.1353/ajm.2005.0033
- Yvan Martel and Frank Merle, Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation, Ann. of Math. (2) 155 (2002), no. 1, 235–280. MR 1888800, DOI 10.2307/3062156
- Yvan Martel and Frank Merle, Multi solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 23 (2006), no. 6, 849–864 (English, with English and French summaries). MR 2271697, DOI 10.1016/j.anihpc.2006.01.001
- Yvan Martel and Frank Merle, Note on coupled linear systems related to two soliton collision for the quartic gKdV equation, Rev. Mat. Complut. 21 (2008), no. 2, 327–349. MR 2441957, DOI 10.5209/rev_{R}EMA.2008.v21.n2.16378
- Yvan Martel, Frank Merle, and Tai-Peng Tsai, Stability and asymptotic stability in the energy space of the sum of $N$ solitons for subcritical gKdV equations, Comm. Math. Phys. 231 (2002), no. 2, 347–373. MR 1946336, DOI 10.1007/s00220-002-0723-2
- Yvan Martel and Pierre Raphaël, Strongly interacting blow up bubbles for the mass critical nonlinear Schrödinger equation, Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), no. 3, 701–737 (English, with English and French summaries). MR 3831035, DOI 10.24033/asens.2364
- Frank Merle, Construction of solutions with exactly $k$ blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys. 129 (1990), no. 2, 223–240. MR 1048692, DOI 10.1007/BF02096981
- Mei Ming, Frederic Rousset, and Nikolay Tzvetkov, Multi-solitons and related solutions for the water-waves system, SIAM J. Math. Anal. 47 (2015), no. 1, 897–954. MR 3315224, DOI 10.1137/140960220
- Robert M. Miura, The Korteweg-de Vries equation: a survey of results, SIAM Rev. 18 (1976), no. 3, 412–459. MR 404890, DOI 10.1137/1018076
- Luc Molinet and Didier Pilod, Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications, Ann. Inst. H. Poincaré C Anal. Non Linéaire 32 (2015), no. 2, 347–371. MR 3325241, DOI 10.1016/j.anihpc.2013.12.003
- Nguyễn Tiến Vinh, Strongly interacting multi-solitons with logarithmic relative distance for the gKdV equation, Nonlinearity 30 (2017), no. 12, 4614–4648. MR 3734149, DOI 10.1088/1361-6544/aa8cab
- Tiến Vinh Nguyễn, Existence of multi-solitary waves with logarithmic relative distances for the NLS equation, C. R. Math. Acad. Sci. Paris 357 (2019), no. 1, 13–58 (English, with English and French summaries). MR 3907597, DOI 10.1016/j.crma.2018.11.012
- Francis Ribaud and Stéphane Vento, A note on the Cauchy problem for the 2D generalized Zakharov-Kuznetsov equations, C. R. Math. Acad. Sci. Paris 350 (2012), no. 9-10, 499–503 (English, with English and French summaries). MR 2929056, DOI 10.1016/j.crma.2012.05.007
- Francis Ribaud and Stéphane Vento, Well-posedness results for the three-dimensional Zakharov-Kuznetsov equation, SIAM J. Math. Anal. 44 (2012), no. 4, 2289–2304. MR 3023376, DOI 10.1137/110850566
- R. Sipcic and D. J. Benney, Lump interactions and collapse in the modified Zakharov-Kuznetsov equation, Stud. Appl. Math. 105 (2000), no. 4, 385–403. MR 1793348, DOI 10.1111/1467-9590.00157
- Michael I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1982/83), no. 4, 567–576. MR 691044, DOI 10.1007/BF01208265
- Michael I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), no. 3, 472–491. MR 783974, DOI 10.1137/0516034
- Michael I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math. 39 (1986), no. 1, 51–67. MR 820338, DOI 10.1002/cpa.3160390103
- V. E. Zakharov and E. A. Kuznetsov, On three dimensional solitons, Zh. Eksp. Teoret. Fiz. 66 (1974), 594–597.
Additional Information
- Frédéric Valet
- Affiliation: IRMA UMR 7501, Université de Strasbourg, CNRS, F-67000 Strasbourg, France
- Address at time of publication: Postboks 7803, 5020 Bergen, Norway
- Email: frederic.valet@uib.no
- Received by editor(s): June 2, 2020
- Published electronically: March 8, 2021
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 3177-3213
- MSC (2020): Primary 35Q53, 35Q35, 35B40, 37K40
- DOI: https://doi.org/10.1090/tran/8331
- MathSciNet review: 4237946