Irregular model sets and tame dynamics
HTML articles powered by AMS MathViewer
- by G. Fuhrmann, E. Glasner, T. Jäger and C. Oertel PDF
- Trans. Amer. Math. Soc. 374 (2021), 3703-3734 Request permission
Abstract:
We study the dynamical properties of irregular model sets and show that the translation action on their hull always admits an infinite independence set. The dynamics can therefore not be tame and the topological sequence entropy is strictly positive. Extending the proof to a more general setting, we further obtain that tame implies regular for almost automorphic group actions on compact spaces.
In the converse direction, we show that even in the restrictive case of Euclidean cut and project schemes irregular model sets may be uniquely ergodic and have zero topological entropy. This provides negative answers to questions by Schlottmann and Moody in the Euclidean setting.
References
- Yves Meyer, Algebraic numbers and harmonic analysis, North-Holland Mathematical Library, Vol. 2, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1972. MR 0485769
- Martin Schlottmann, Generalized model sets and dynamical systems, Directions in mathematical quasicrystals, CRM Monogr. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2000, pp. 143–159. MR 1798991
- J.-Y. Lee, R. V. Moody, and B. Solomyak, Pure point dynamical and diffraction spectra, Ann. Henri Poincaré 3 (2002), no. 5, 1003–1018. MR 1937612, DOI 10.1007/s00023-002-8646-1
- Michael Baake and Daniel Lenz, Dynamical systems on translation bounded measures: pure point dynamical and diffraction spectra, Ergodic Theory Dynam. Systems 24 (2004), no. 6, 1867–1893. MR 2106769, DOI 10.1017/S0143385704000318
- Michael Baake, Daniel Lenz, and Robert V. Moody, Characterization of model sets by dynamical systems, Ergodic Theory Dynam. Systems 27 (2007), no. 2, 341–382. MR 2308136, DOI 10.1017/S0143385706000800
- Eli Glasner, The structure of tame minimal dynamical systems for general groups, Invent. Math. 211 (2018), no. 1, 213–244. MR 3742758, DOI 10.1007/s00222-017-0747-z
- Felipe García-Ramos, Weak forms of topological and measure-theoretical equicontinuity: relationships with discrete spectrum and sequence entropy, Ergodic Theory Dynam. Systems 37 (2017), no. 4, 1211–1237. MR 3645516, DOI 10.1017/etds.2015.83
- F. García-Ramos, T. Jäger, and X. Ye, Mean equicontinuity, almost automorphy and regularity, to appear in Israel Journal of Math., arXiv:1908.05207.
- David Kerr and Hanfeng Li, Independence in topological and $C^*$-dynamics, Math. Ann. 338 (2007), no. 4, 869–926. MR 2317754, DOI 10.1007/s00208-007-0097-z
- Peter A. B. Pleasants and Christian Huck, Entropy and diffraction of the $k$-free points in $n$-dimensional lattices, Discrete Comput. Geom. 50 (2013), no. 1, 39–68. MR 3070541, DOI 10.1007/s00454-013-9516-y
- M. Baake, T. Jäger, and D. Lenz, Toeplitz flows and model sets, Bull. Lond. Math. Soc. 48 (2016), no. 4, 691–698. MR 3532143, DOI 10.1112/blms/bdw033
- Susan Williams, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete 67 (1984), no. 1, 95–107. MR 756807, DOI 10.1007/BF00534085
- Nelson G. Markley and Michael E. Paul, Almost automorphic symbolic minimal sets without unique ergodicity, Israel J. Math. 34 (1979), no. 3, 259–272 (1980). MR 570885, DOI 10.1007/BF02760887
- Tomasz Downarowicz and Eli Glasner, Isomorphic extensions and applications, Topol. Methods Nonlinear Anal. 48 (2016), no. 1, 321–338. MR 3586277, DOI 10.12775/TMNA.2016.050
- S. Fomin, On dynamical systems with a purely point spectrum, Doklady Akad. Nauk SSSR (N.S.) 77 (1951), 29–32 (Russian). MR 0043397
- Joseph Auslander, Mean-$L$-stable systems, Illinois J. Math. 3 (1959), 566–579. MR 149462
- Jian Li, Siming Tu, and Xiangdong Ye, Mean equicontinuity and mean sensitivity, Ergodic Theory Dynam. Systems 35 (2015), no. 8, 2587–2612. MR 3456608, DOI 10.1017/etds.2014.41
- G. Fuhrmann, M. Gröger, and D. Lenz, The structure of mean equicontinuous group actions, in preparation.
- Joseph Auslander, Minimal flows and their extensions, North-Holland Mathematics Studies, vol. 153, North-Holland Publishing Co., Amsterdam, 1988. Notas de Matemática [Mathematical Notes], 122. MR 956049
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften, Band 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156915
- Angela Köhler, Enveloping semigroups for flows, Proc. Roy. Irish Acad. Sect. A 95 (1995), no. 2, 179–191. MR 1660377
- E. Glasner, On tame dynamical systems, Colloq. Math. 105 (2006), no. 2, 283–295. MR 2237913, DOI 10.4064/cm105-2-9
- Wen Huang, Tame systems and scrambled pairs under an abelian group action, Ergodic Theory Dynam. Systems 26 (2006), no. 5, 1549–1567. MR 2266373, DOI 10.1017/S0143385706000198
- Eli Glasner, The structure of tame minimal dynamical systems, Ergodic Theory Dynam. Systems 27 (2007), no. 6, 1819–1837. MR 2371597, DOI 10.1017/S0143385707000296
- Elon Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math. 146 (2001), no. 2, 259–295. MR 1865397, DOI 10.1007/s002220100162
- Rufus Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414. MR 274707, DOI 10.1090/S0002-9947-1971-0274707-X
- Michael Baake, Daniel Lenz, and Christoph Richard, Pure point diffraction implies zero entropy for Delone sets with uniform cluster frequencies, Lett. Math. Phys. 82 (2007), no. 1, 61–77. MR 2367875, DOI 10.1007/s11005-007-0186-7
- T. Hauser, Relative topological entropy for actions of non-discrete groups on compact spaces in the context of cut and project schemes, preprint 2020, arXiv:1901.08985.
- Peter Müller and Christoph Richard, Ergodic properties of randomly coloured point sets, Canad. J. Math. 65 (2013), no. 2, 349–402. MR 3028567, DOI 10.4153/CJM-2012-009-7
- R. V. Moody, Model sets: A survey, In From quasicrystals to more complex systems, pages 145–166. Springer, 2000.
- Michael Baake and Uwe Grimm, Aperiodic order. Vol. 1, Encyclopedia of Mathematics and its Applications, vol. 149, Cambridge University Press, Cambridge, 2013. A mathematical invitation; With a foreword by Roger Penrose. MR 3136260, DOI 10.1017/CBO9781139025256
- Jeong-Yup Lee and Robert V. Moody, A characterization of model multi-colour sets, Ann. Henri Poincaré 7 (2006), no. 1, 125–143. MR 2205466, DOI 10.1007/s00023-005-0244-6
- Michael E. Paul, Construction of almost automorphic symbolic minimal flows, General Topology and Appl. 6 (1976), no. 1, 45–56. MR 388365, DOI 10.1016/0016-660X(76)90007-6
- T. Downarowicz and F. Durand, Factors of Toeplitz flows and other almost $1-1$ extensions over group rotations, Math. Scand. 90 (2002), no. 1, 57–72. MR 1887094, DOI 10.7146/math.scand.a-14361
- T. Downarowicz, Private communication.
- Tobias Jäger, Daniel Lenz, and Christian Oertel, Model sets with positive entropy in Euclidean cut and project schemes, Ann. Sci. Éc. Norm. Supér. (4) 52 (2019), no. 5, 1073–1106 (English, with English and French summaries). MR 4057777, DOI 10.24033/asens.2403
- Tomasz Downarowicz and Stanisław Kasjan, Odometers and Toeplitz systems revisited in the context of Sarnak’s conjecture, Studia Math. 229 (2015), no. 1, 45–72. MR 3459905, DOI 10.4064/sm8314-12-2015
- S. Świerczkowski, On successive settings of an arc on the circumference of a circle, Fund. Math. 46 (1959), 187–189. MR 104651, DOI 10.4064/fm-46-2-187-189
- Welington de Melo and Sebastian van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993. MR 1239171, DOI 10.1007/978-3-642-78043-1
- Petr Kůrka, Topological and symbolic dynamics, Cours Spécialisés [Specialized Courses], vol. 11, Société Mathématique de France, Paris, 2003. MR 2041676
- Joanna Kułaga-Przymus, Mariusz Lemańczyk, and Benjamin Weiss, On invariant measures for $\mathcal {B}$-free systems, Proc. Lond. Math. Soc. (3) 110 (2015), no. 6, 1435–1474. MR 3356811, DOI 10.1112/plms/pdv017
- Gerhard Keller and Christoph Richard, Dynamics on the graph of the torus parametrization, Ergodic Theory Dynam. Systems 38 (2018), no. 3, 1048–1085. MR 3784254, DOI 10.1017/etds.2016.53
- Gerhard Keller and Christoph Richard, Periods and factors of weak model sets, Israel J. Math. 229 (2019), no. 1, 85–132. MR 3905598, DOI 10.1007/s11856-018-1788-8
Additional Information
- G. Fuhrmann
- Affiliation: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, United Kingdom
- MR Author ID: 1149230
- ORCID: 0000-0002-0634-0802
- Email: gabriel.fuhrmann@durham.ac.uk
- E. Glasner
- Affiliation: Department of Mathematics, Tel-Aviv University, Ramat Aviv, Israel
- MR Author ID: 271825
- ORCID: 0000-0003-1167-1283
- Email: glasner@math.tau.ac.il
- T. Jäger
- Affiliation: Institute of Mathematics, Friedrich Schiller University Jena, Germany
- Email: tobias.jaeger@uni-jena.de
- C. Oertel
- Affiliation: Institute of Mathematics, Friedrich Schiller University Jena, Germany
- MR Author ID: 1360927
- Email: christian.oertel@uni-jena.de
- Received by editor(s): June 18, 2019
- Received by editor(s) in revised form: June 12, 2020, and October 6, 2020
- Published electronically: March 8, 2021
- Additional Notes: The third author was supported by a Heisenberg professorship of the German Research Council (DFG grant OE 538/6-1). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 750865
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 3703-3734
- MSC (2020): Primary 52C23; Secondary 37B10, 37B40
- DOI: https://doi.org/10.1090/tran/8349
- MathSciNet review: 4237960