Unit groups of maximal orders in totally definite quaternion algebras over real quadratic fields
HTML articles powered by AMS MathViewer
- by Qun Li, Jiangwei Xue and Chia-Fu Yu PDF
- Trans. Amer. Math. Soc. 374 (2021), 5349-5403 Request permission
Abstract:
We study a form of refined class number formula (resp. type number formula) for maximal orders in totally definite quaternion algebras over real quadratic fields, by taking into consideration the automorphism groups of right ideal classes (resp. unit groups of maximal orders). For each finite noncyclic group $G$, we give an explicit formula for the number of conjugacy classes of maximal orders whose unit groups modulo center are isomorphic to $G$, and write down a representative for each conjugacy class. This leads to a complete recipe (even explicit formulas in special cases) for the refined class number formula for all finite groups. As an application, we prove the existence of superspecial abelian surfaces whose endomorphism algebras coincide with $\mathbb {Q}( \sqrt {p} )$ in all positive characteristic $p\not \equiv 1\pmod {24}$.References
- Şaban Alaca and Kenneth S. Williams, Introductory algebraic number theory, Cambridge University Press, Cambridge, 2004. MR 2031707
- Roger C. Alperin, Remarks on a problem of Eisenstein, JP J. Algebra Number Theory Appl. 7 (2007), no. 1, 97–102. MR 2331553
- Luis Arenas-Carmona, Eichler orders, trees and representation fields, Int. J. Number Theory 9 (2013), no. 7, 1725–1741. MR 3130146, DOI 10.1142/S179304211350053X
- Luis Arenas-Carmona and Ignacio Saavedra, On some branches of the Bruhat-Tits tree, Int. J. Number Theory 12 (2016), no. 3, 813–831. MR 3477422, DOI 10.1142/S1793042116500524
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- J. Brzeziński, On orders in quaternion algebras, Comm. Algebra 11 (1983), no. 5, 501–522. MR 693798, DOI 10.1080/00927878308822861
- J. Brzezinski, On automorphisms of quaternion orders, J. Reine Angew. Math. 403 (1990), 166–186. MR 1030414, DOI 10.1515/crll.1990.403.166
- Juliusz Brzezinski, Definite quaternion orders of class number one, J. Théor. Nombres Bordeaux 7 (1995), no. 1, 93–96. Les Dix-huitièmes Journées Arithmétiques (Bordeaux, 1993). MR 1413568
- D. A. Buell, H. C. Williams, and K. S. Williams, On the imaginary bicyclic biquadratic fields with class-number $2$, Math. Comp. 31 (1977), no. 140, 1034–1042. MR 441914, DOI 10.1090/S0025-5718-1977-0441914-1
- Wei-Liang Chow, Abelian varieties over function fields, Trans. Amer. Math. Soc. 78 (1955), 253–275. MR 67527, DOI 10.1090/S0002-9947-1955-0067527-3
- P. E. Conner and J. Hurrelbrink, Class number parity, Series in Pure Mathematics, vol. 8, World Scientific Publishing Co., Singapore, 1988. MR 963648, DOI 10.1142/0663
- Brian Conrad, Chow’s $K/k$-image and $K/k$-trace, and the Lang-Néron theorem, Enseign. Math. (2) 52 (2006), no. 1-2, 37–108. MR 2255529
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. II, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. With applications to finite groups and orders; A Wiley-Interscience Publication. MR 892316
- Yurij A. Drozd and Vladimir V. Kirichenko, Finite-dimensional algebras, Springer-Verlag, Berlin, 1994. Translated from the 1980 Russian original and with an appendix by Vlastimil Dlab. MR 1284468, DOI 10.1007/978-3-642-76244-4
- Martin Eichler, Zur Zahlentheorie der Quaternionen-Algebren, J. Reine Angew. Math. 195 (1955), 127–151 (1956) (German). MR 80767, DOI 10.1515/crll.1955.195.127
- A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge University Press, Cambridge, 1993. MR 1215934
- Emmanuel Hallouin and Christian Maire, Cancellation in totally definite quaternion algebras, J. Reine Angew. Math. 595 (2006), 189–213. MR 2244802, DOI 10.1515/CRELLE.2006.048
- Ki-ichiro Hashimoto, Twisted trace formula of the Brandt matrix, Proc. Japan Acad. Ser. A Math. Sci. 53 (1977), no. 3, 98–102. MR 453704
- G. Herglotz, Über einen Dirichletschen Satz, Math. Z. 12 (1922), no. 1, 255–261 (German). MR 1544516, DOI 10.1007/BF01482079
- Jae Moon Kim and Jado Ryu, On the class number and the fundamental unit of the real quadratic field $k=\Bbb Q(\sqrt {pq})$, Bull. Aust. Math. Soc. 85 (2012), no. 3, 359–370. MR 2924765, DOI 10.1017/S0004972711003352
- Markus Kirschmer and David Lorch, Ternary quadratic forms over number fields with small class number, J. Number Theory 161 (2016), 343–361. MR 3435732, DOI 10.1016/j.jnt.2014.11.001
- Markus Kirschmer and John Voight, Algorithmic enumeration of ideal classes for quaternion orders, SIAM J. Comput. 39 (2010), no. 5, 1714–1747. MR 2592031, DOI 10.1137/080734467
- Yoshiyuki Kitaoka, Quaternary even positive definite quadratic forms of prime discriminant, Nagoya Math. J. 52 (1973), 147–161. MR 344192
- Otto Körner, Traces of Eichler-Brandt matrices and type numbers of quaternion orders, Proc. Indian Acad. Sci. Math. Sci. 97 (1987), no. 1-3, 189–199 (1988). MR 983614, DOI 10.1007/BF02837823
- Ke-Zheng Li and Frans Oort, Moduli of supersingular abelian varieties, Lecture Notes in Mathematics, vol. 1680, Springer-Verlag, Berlin, 1998. MR 1611305, DOI 10.1007/BFb0095931
- Colin Maclachlan and Alan W. Reid, The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics, vol. 219, Springer-Verlag, New York, 2003. MR 1937957, DOI 10.1007/978-1-4757-6720-9
- Daniel A. Marcus, Number fields, Universitext, Springer-Verlag, New York-Heidelberg, 1977. MR 0457396
- Thomas M. McCall, Charles J. Parry, and Ramona Ranalli, Imaginary bicyclic biquadratic fields with cyclic $2$-class group, J. Number Theory 53 (1995), no. 1, 88–99. MR 1344833, DOI 10.1006/jnth.1995.1079
- O. Timothy O’Meara, Introduction to quadratic forms, Classics in Mathematics, Springer-Verlag, Berlin, 2000. Reprint of the 1973 edition. MR 1754311
- Arnold K. Pizer, Type numbers of Eichler orders, J. Reine Angew. Math. 264 (1973), 76–102. MR 337881, DOI 10.1515/crll.1973.264.76
- Arnold Pizer, On the arithmetic of quaternion algebras, Acta Arith. 31 (1976), no. 1, 61–89. MR 432601, DOI 10.4064/aa-31-1-61-89
- Paul Ponomarev, Class number formulas for quaternary quadratic forms, Acta Arith. 39 (1981), no. 1, 95–104. MR 638746, DOI 10.4064/aa-39-1-95-104
- Florian Pop, Embedding problems over large fields, Ann. of Math. (2) 144 (1996), no. 1, 1–34. MR 1405941, DOI 10.2307/2118581
- I. Reiner, Maximal orders, London Mathematical Society Monographs. New Series, vol. 28, The Clarendon Press, Oxford University Press, Oxford, 2003. Corrected reprint of the 1975 original; With a foreword by M. J. Taylor. MR 1972204
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237
- Daniel Smertnig, A note on cancellation in totally definite quaternion algebras, J. Reine Angew. Math. 707 (2015), 209–216. MR 3403458, DOI 10.1515/crelle-2013-0069
- Peter Stevenhagen, On a problem of Eisenstein, Acta Arith. 74 (1996), no. 3, 259–268. MR 1373712, DOI 10.4064/aa-74-3-259-268
- Fang-Ting Tu, On orders of $M(2,K)$ over a non-Archimedean local field, Int. J. Number Theory 7 (2011), no. 5, 1137–1149. MR 2825964, DOI 10.1142/S1793042111004654
- Marie-France Vignéras, Nombre de classes d’un ordre d’Eichler et valeur au point $-1$ de la fonction zêta d’un corps quadratique réel, Enseign. Math. (2) 21 (1975), no. 1, 69–105 (French). MR 568312
- Marie-France Vignéras, Simplification pour les ordres des corps de quaternions totalement définis, J. Reine Angew. Math. 286(287) (1976), 257–277. MR 429841, DOI 10.1515/crll.1976.286-287.257
- Marie-France Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980 (French). MR 580949
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
- Fu-Tsun Wei and Chia-Fu Yu, Class numbers of central simple algebras over global function fields, Int. Math. Res. Not. IMRN 11 (2015), 3525–3575. MR 3373059
- Robert A. Wilson, The finite simple groups, Graduate Texts in Mathematics, vol. 251, Springer-Verlag London, Ltd., London, 2009. MR 2562037, DOI 10.1007/978-1-84800-988-2
- Jiangwei Xue, Tse-Chung Yang, and Chia-Fu Yu, Supersingular abelian surfaces and Eichler’s class number formula, Asian J. Math. 23 (2019), no. 4, 651–680. MR 4052723, DOI 10.4310/AJM.2019.v23.n4.a6
- Jiangwei Xue, Tse-Chung Yang, and Chia-Fu Yu, Numerical invariants of totally imaginary quadratic $\Bbb Z[\sqrt p]$-orders, Taiwanese J. Math. 20 (2016), no. 4, 723–741. MR 3535670, DOI 10.11650/tjm.20.2016.6464
- Jiangwei Xue, Tse-Chung Yang, and Chia-Fu Yu, On superspecial abelian surfaces over finite fields, Doc. Math. 21 (2016), 1607–1643. MR 3603930
- Jiangwei Xue, Tse-Chung Yang, and Chia-Fu Yu, On superspecial abelian surfaces over finite fields II, J. Math. Soc. Japan 72 (2020), no. 1, 303–331. MR 4055096, DOI 10.2969/jmsj/81438143
- Jiangwei Xue, Chia-Fu Yu, and Yuqiang Zheng, On superspecial abelian surfaces over finite fields III, arXiv:2102.01296, 21 pp.
- Jiang Wei Xue and Chia Fu Yu, On counting certain abelian varieties over finite fields, Acta Math. Sin. (Engl. Ser.) 37 (2021), no. 1, 205–228. MR 4204542, DOI 10.1007/s10114-020-8415-4
- Jiangwei Xue and Chia-Fu Yu, On superspecial abelian surfaces and type numbers of totally definite quaternion algebras, Indiana Univ. Math. J. 70 (2021), 781–808.
- Chia-Fu Yu, Variations of mass formulas for definite division algebras, J. Algebra 422 (2015), 166–186. MR 3272073, DOI 10.1016/j.jalgebra.2014.08.047
- Don Zagier, On the values at negative integers of the zeta-function of a real quadratic field, Enseign. Math. (2) 22 (1976), no. 1-2, 55–95. MR 406957
- Zhe Zhang and Qin Yue, Fundamental units of real quadratic fields of odd class number, J. Number Theory 137 (2014), 122–129. MR 3157781, DOI 10.1016/j.jnt.2013.10.019
Additional Information
- Qun Li
- Affiliation: School of Mathematics and Statistics, Wuhan University, Luojiashan, Wuhan, Hubei, 430072, People’s Republic of China
- Email: lq_whu@icloud.com
- Jiangwei Xue
- Affiliation: Collaborative Innovation Centre of Mathematics, School of Mathematics and Statistics, Wuhan University, Luojiashan, Wuhan, Hubei, 430072, People’s Republic of China; and Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan, Hubei, 430072, People’s Republic of China
- MR Author ID: 899506
- Email: xue_j@whu.edu.cn
- Chia-Fu Yu
- Affiliation: Institute of Mathematics, Academia Sinica, Astronomy-Mathematics Building, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan; and National Center for Theoretical Sciences, Astronomy-Mathematics Building, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- MR Author ID: 716493
- ORCID: 0000-0003-1634-672X
- Email: chiafu@math.sinica.edu.tw
- Received by editor(s): July 27, 2018
- Received by editor(s) in revised form: February 4, 2019, and June 1, 2019
- Published electronically: May 18, 2021
- Additional Notes: The second author was partially supported by the National Natural Science Foundation of China grant no. 11601395
The third author was partially supported by the grants MoST 104-2115-M-001-001-MY3 and 107-2115-M-001-001-MY2. - © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 5349-5403
- MSC (2020): Primary 11R52, 11R29, 11G10
- DOI: https://doi.org/10.1090/tran/8016
- MathSciNet review: 4293775