Zeros of slice functions and polynomials over dual quaternions
HTML articles powered by AMS MathViewer
- by Graziano Gentili, Caterina Stoppato and Tomaso Trinci PDF
- Trans. Amer. Math. Soc. 374 (2021), 5509-5544 Request permission
Abstract:
This work studies the zeros of slice functions over the algebra of dual quaternions and it comprises applications to the problem of factorizing motion polynomials. The class of slice functions over a real alternative *-algebra $A$ was defined by Ghiloni and Perotti [Adv. Math. 226 (2011), pp. 1662–1691], extending the class of slice regular functions introduced by Gentili and Struppa [C. R. Math. Acad. Sci. Paris 342 (2006), pp. 741–744]. Both classes strictly include the polynomials over $A$. We focus on the case when $A$ is the algebra of dual quaternions $\mathbb {D}\mathbb {H}$. The specific properties of this algebra allow a full characterization of the zero sets, which is not available over general real alternative *-algebras. This characterization sheds some light on the study of motion polynomials over $\mathbb {D}\mathbb {H}$, introduced by Hegedüs, Schicho, and Schröcker [Mech. Mach. Theory 69 (2013), pp. 42–152] for their relevance in mechanism science.References
- Fabrizio Colombo, Irene Sabadini, and Daniele C. Struppa, Slice monogenic functions, Israel J. Math. 171 (2009), 385–403. MR 2520116, DOI 10.1007/s11856-009-0055-4
- Konstantinos Daniilidis. Hand-eye calibration using dual quaternions. Internat. J. Robotics Res. 18 (1999), no. 3, 286–298.
- Graziano Gentili, Caterina Stoppato, and Daniele C. Struppa, Regular functions of a quaternionic variable, Springer Monographs in Mathematics, Springer, Heidelberg, 2013. MR 3013643, DOI 10.1007/978-3-642-33871-7
- Graziano Gentili and Daniele C. Struppa, A new approach to Cullen-regular functions of a quaternionic variable, C. R. Math. Acad. Sci. Paris 342 (2006), no. 10, 741–744 (English, with English and French summaries). MR 2227751, DOI 10.1016/j.crma.2006.03.015
- Graziano Gentili and Daniele C. Struppa, A new theory of regular functions of a quaternionic variable, Adv. Math. 216 (2007), no. 1, 279–301. MR 2353257, DOI 10.1016/j.aim.2007.05.010
- Graziano Gentili and Daniele C. Struppa, Regular functions on a Clifford algebra, Complex Var. Elliptic Equ. 53 (2008), no. 5, 475–483. MR 2410345, DOI 10.1080/17476930701778869
- Graziano Gentili and Daniele C. Struppa, Regular functions on the space of Cayley numbers, Rocky Mountain J. Math. 40 (2010), no. 1, 225–241. MR 2607115, DOI 10.1216/RMJ-2010-40-1-225
- R. Ghiloni and A. Perotti, Slice regular functions on real alternative algebras, Adv. Math. 226 (2011), no. 2, 1662–1691. MR 2737796, DOI 10.1016/j.aim.2010.08.015
- Riccardo Ghiloni, Alessandro Perotti, and Caterina Stoppato, The algebra of slice functions, Trans. Amer. Math. Soc. 369 (2017), no. 7, 4725–4762. MR 3632548, DOI 10.1090/tran/6816
- Klaus Gürlebeck, Klaus Habetha, and Wolfgang Sprößig, Holomorphic functions in the plane and $n$-dimensional space, Birkhäuser Verlag, Basel, 2008. Translated from the 2006 German original; With 1 CD-ROM (Windows and UNIX). MR 2369875
- Gábor Hegedüs, Josef Schicho, and Hans-Peter Schröcker. Factorization of rational curves in the study quadric. Mech. Mach. Theory 69 (2013), 142–152.
- Zijia Li, Daniel F. Scharler, and Hans-Peter Schröcker, Factorization results for left polynomials in some associative real algebras: state of the art, applications, and open questions, J. Comput. Appl. Math. 349 (2019), 508–522. MR 3886731, DOI 10.1016/j.cam.2018.09.045
- Z. Li, J. Schicho, and H.-P. Schröcker, The rational motion of minimal dual quaternion degree with prescribed trajectory, Comput. Aided Geom. Design 41 (2016), 1–9. MR 3452034, DOI 10.1016/j.cagd.2015.10.002
- Zijia Li, Josef Schicho, and Hans-Peter Schröcker, Factorization of motion polynomials, J. Symbolic Comput. 92 (2019), 190–202. MR 3907352, DOI 10.1016/j.jsc.2018.02.005
- J. M. Selig, Geometric fundamentals of robotics, 2nd ed., Monographs in Computer Science, Springer, New York, 2005. MR 2250553
Additional Information
- Graziano Gentili
- Affiliation: Dipartimento di Matematica e Informatica “U. Dini”, Università degli Studi di Firenze, Viale Morgagni 67/A, I-50134 Firenze, Italy
- MR Author ID: 189767
- ORCID: 0000-0002-5001-2187
- Email: graziano.gentili@unifi.it
- Caterina Stoppato
- Affiliation: Dipartimento di Matematica e Informatica “U. Dini”, Università degli Studi di Firenze, Viale Morgagni 67/A, I-50134 Firenze, Italy
- MR Author ID: 862712
- ORCID: 0000-0001-9859-6559
- Email: caterina.stoppato@unifi.it
- Tomaso Trinci
- Affiliation: Dipartimento di Matematica e Informatica “U. Dini”, Università degli Studi di Firenze, Viale Morgagni 67/A, I-50134 Firenze, Italy
- Email: tomaso.trinci90@gmail.com
- Received by editor(s): April 12, 2019
- Received by editor(s) in revised form: October 21, 2020
- Published electronically: April 27, 2021
- Additional Notes: This work was partly supported by INdAM, through: GNSAGA; INdAM project “Hypercomplex function theory and applications”. It was also partly supported by MIUR, through the projects: Finanziamento Premiale FOE 2014 “Splines for accUrate NumeRics: adaptIve models for Simulation Environments”; PRIN 2017 “Real and complex manifolds: topology, geometry and holomorphic dynamics”.
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 5509-5544
- MSC (2020): Primary 30G35, 30C15
- DOI: https://doi.org/10.1090/tran/8346
- MathSciNet review: 4293779