The integral Chow ring of the stack of smooth non-hyperelliptic curves of genus three
HTML articles powered by AMS MathViewer
- by Andrea Di Lorenzo, Damiano Fulghesu and Angelo Vistoli PDF
- Trans. Amer. Math. Soc. 374 (2021), 5583-5622 Request permission
Abstract:
We compute the integral Chow ring of the stack of smooth, non-hyperelliptic curves of genus $3$. We obtain this result by computing the integral Chow ring of the stack of smooth plane quartics, by means of equivariant intersection theory.References
- A. Di Lorenzo, Picard group of moduli of curves of low genus in positive characteristic. Preprint, arXiv:1812.01913 2018.
- A. Di Lorenzo, The Chow ring of the stack of hyperelliptic curves of odd genus. Int. Math. Res. Not. IMRN rnz101 (2019), https://doi.org/10.1093/imrn/rnz101.
- Dan Edidin and Damiano Fulghesu, The integral Chow ring of the stack of at most 1-nodal rational curves, Comm. Algebra 36 (2008), no. 2, 581–594. MR 2388024, DOI 10.1080/00927870701719045
- Dan Edidin and Damiano Fulghesu, The integral Chow ring of the stack of hyperelliptic curves of even genus, Math. Res. Lett. 16 (2009), no. 1, 27–40. MR 2480558, DOI 10.4310/MRL.2009.v16.n1.a4
- Dan Edidin and William Graham, Equivariant intersection theory, Invent. Math. 131 (1998), no. 3, 595–634. MR 1614555, DOI 10.1007/s002220050214
- Dan Edidin and William Graham, Localization in equivariant intersection theory and the Bott residue formula, Amer. J. Math. 120 (1998), no. 3, 619–636. MR 1623412
- Geir Ellingsrud and Stein Arild Strømme, On the homology of the Hilbert scheme of points in the plane, Invent. Math. 87 (1987), no. 2, 343–352. MR 870732, DOI 10.1007/BF01389419
- Geir Ellingsrud and Stein Arild Strømme, Towards the Chow ring of the Hilbert scheme of $\textbf {P}^2$, J. Reine Angew. Math. 441 (1993), 33–44. MR 1228610
- Carel Faber, Chow rings of moduli spaces of curves. I. The Chow ring of $\overline {\scr M}_3$, Ann. of Math. (2) 132 (1990), no. 2, 331–419. MR 1070600, DOI 10.2307/1971525
- Carel Faber, Chow rings of moduli spaces of curves. II. Some results on the Chow ring of $\overline {\scr M}_4$, Ann. of Math. (2) 132 (1990), no. 3, 421–449. MR 1078265, DOI 10.2307/1971526
- John Fogarty, Algebraic families on an algebraic surface, Amer. J. Math. 90 (1968), 511–521. MR 237496, DOI 10.2307/2373541
- Damiano Fulghesu and Angelo Vistoli, The Chow ring of the stack of smooth plane cubics, Michigan Math. J. 67 (2018), no. 1, 3–29. MR 3770851, DOI 10.1307/mmj/1516330968
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- E. Larson, The Integral Chow ring of $\bar {M}_2$, Preprint, arXiv:1904.08081.
- E. Izadi, The Chow ring of the moduli space of curves of genus $5$, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 267–304. MR 1363060, DOI 10.1007/978-1-4612-4264-2_{1}0
- Masaki Maruyama, Elementary transformations in the theory of algebraic vector bundles, Algebraic geometry (La Rábida, 1981) Lecture Notes in Math., vol. 961, Springer, Berlin, 1982, pp. 241–266. MR 708337, DOI 10.1007/BFb0071286
- David Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271–328. MR 717614
- Nikola Penev and Ravi Vakil, The Chow ring of the moduli space of curves of genus six, Algebr. Geom. 2 (2015), no. 1, 123–136. MR 3322200, DOI 10.14231/AG-2015-006
- I. R. Shafarevich, Basic algebraic geometry, Die Grundlehren der mathematischen Wissenschaften, Band 213, Springer-Verlag, New York-Heidelberg, 1974. Translated from the Russian by K. A. Hirsch. MR 0366917
- Angelo Vistoli, The Chow ring of $\scr M_2$. Appendix to “Equivariant intersection theory” [Invent. Math. 131 (1998), no. 3, 595–634; MR1614555 (99j:14003a)] by D. Edidin and W. Graham, Invent. Math. 131 (1998), no. 3, 635–644. MR 1614559, DOI 10.1007/s002220050215
Additional Information
- Andrea Di Lorenzo
- Affiliation: Aarhus University, Ny Munkegade 118, bldg. 1530, DK-8000 Aarhus C, Denmark
- MR Author ID: 1090624
- ORCID: 0000-0002-7407-1675
- Email: andrea.dilorenzo@math.au.dk
- Damiano Fulghesu
- Affiliation: Department of Mathematics, Minnesota State University, 1104 7th Ave South, Moorhead, Minnesota 56563
- MR Author ID: 740587
- Email: fulghesu@mnstate.edu
- Angelo Vistoli
- Affiliation: Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- MR Author ID: 194370
- ORCID: 0000-0003-3857-3755
- Email: angelo.vistoli@sns.it
- Received by editor(s): May 25, 2020
- Received by editor(s) in revised form: October 26, 2020
- Published electronically: May 7, 2021
- Additional Notes: The second author has been partially supported by Scuola Normale Superiore and by Simons Foundation grant #360311. The third author has been partially supported by research funds from the Scuola Normale Superiore
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 5583-5622
- MSC (2020): Primary 14C15, 14H10, 14H50
- DOI: https://doi.org/10.1090/tran/8354
- MathSciNet review: 4293781