On identities for zeta values in Tate algebras
HTML articles powered by AMS MathViewer
- by Huy Hung Le and Tuan Ngo Dac PDF
- Trans. Amer. Math. Soc. 374 (2021), 5623-5650 Request permission
Abstract:
Zeta values in Tate algebras were introduced by Pellarin in 2012. They are generalizations of Carlitz zeta values and play an increasingly important role in function field arithmetic. In this paper we prove a conjecture of Pellarin on identities for these zeta values. The proof is based on arithmetic properties of Carlitz zeta values and an explicit formula for Bernoulli-type polynomials attached to zeta values in Tate algebras.References
- Greg W. Anderson and Dinesh S. Thakur, Tensor powers of the Carlitz module and zeta values, Ann. of Math. (2) 132 (1990), no. 1, 159–191. MR 1059938, DOI 10.2307/1971503
- Bruno Anglès, Tuan Ngo Dac, and Floric Tavares Ribeiro, Special functions and twisted $L$-series, J. Théor. Nombres Bordeaux 29 (2017), no. 3, 931–961 (English, with English and French summaries). MR 3745255
- Bruno Anglès, Tuan Ngo Dac, and Floric Tavares Ribeiro, Stark units in positive characteristic, Proc. Lond. Math. Soc. (3) 115 (2017), no. 4, 763–812. MR 3716942, DOI 10.1112/plms.12051
- Bruno Anglès, Tuan Ngo Dac, and Floric Tavares Ribeiro, Exceptional zeros of $L$-series and Bernoulli-Carlitz numbers, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19 (2019), no. 3, 981–1024. MR 4012801, DOI 10.2422/2036-2145.201706_{0}06
- Bruno Anglès and Federico Pellarin, Functional identities for $L$-series values in positive characteristic, J. Number Theory 142 (2014), 223–251. MR 3208400, DOI 10.1016/j.jnt.2014.03.004
- Bruno Anglès and Federico Pellarin, Universal Gauss-Thakur sums and $L$-series, Invent. Math. 200 (2015), no. 2, 653–669. MR 3338012, DOI 10.1007/s00222-014-0546-8
- B. Anglès, F. Pellarin, and F. Tavares Ribeiro, Arithmetic of positive characteristic $L$-series values in Tate algebras, Compos. Math. 152 (2016), no. 1, 1–61. With an appendix by F. Demeslay. MR 3453387, DOI 10.1112/S0010437X15007563
- Bruno Anglès, Federico Pellarin, and Floric Tavares Ribeiro, Anderson-Stark units for $\Bbb {F}_q[\theta ]$, Trans. Amer. Math. Soc. 370 (2018), no. 3, 1603–1627. MR 3739186, DOI 10.1090/tran/6994
- Bruno Anglès and Floric Tavares Ribeiro, Arithmetic of function field units, Math. Ann. 367 (2017), no. 1-2, 501–579. MR 3606448, DOI 10.1007/s00208-016-1405-2
- Leonard Carlitz, On certain functions connected with polynomials in a Galois field, Duke Math. J. 1 (1935), no. 2, 137–168. MR 1545872, DOI 10.1215/S0012-7094-35-00114-4
- F. Demeslay. A class formula for $L$-series in positive characteristic. arXiv:1412.3704, 2014.
- F. Demeslay. Formules de classes en caractéristique positive. PhD thesis, Université de Caen Normandie, October 2015.
- Ernst-Ulrich Gekeler, On the coefficients of Drinfel′d modular forms, Invent. Math. 93 (1988), no. 3, 667–700. MR 952287, DOI 10.1007/BF01410204
- Oğuz Gezmiş, Taelman $L$-values for Drinfeld modules over Tate algebras, Res. Math. Sci. 6 (2019), no. 1, Paper No. 18, 25. MR 3910186, DOI 10.1007/s40687-019-0181-5
- Oğuz Gezmiş and Matthew A. Papanikolas, The de Rham isomorphism for Drinfeld modules over Tate algebras, J. Algebra 525 (2019), 454–496. MR 3912661, DOI 10.1016/j.jalgebra.2019.02.006
- David Goss, Modular forms for $\textbf {F}_{r}[T]$, J. Reine Angew. Math. 317 (1980), 16–39. MR 581335, DOI 10.1515/crll.1980.317.16
- David Goss, $\pi$-adic Eisenstein series for function fields, Compositio Math. 41 (1980), no. 1, 3–38. MR 578049
- David Goss, The algebraist’s upper half-plane, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 3, 391–415. MR 561525, DOI 10.1090/S0273-0979-1980-14751-5
- David Goss, Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 35, Springer-Verlag, Berlin, 1996. MR 1423131, DOI 10.1007/978-3-642-61480-4
- D. Goss, B. Anglès, T. Ngo Dac, F. Pellarin, and F. Tavares Ribeiro. The digit principle and derivatives of certain $L$-series. Publ. Math. Besançon Algèbre Théorie Nr. 2019(1):81–102, 2019.
- Andrew Granville, Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers, Organic mathematics (Burnaby, BC, 1995) CMS Conf. Proc., vol. 20, Amer. Math. Soc., Providence, RI, 1997, pp. 253–276. MR 1483922
- Nathan Green, Special zeta values using tensor powers of Drinfeld modules, Math. Res. Lett. 26 (2019), no. 6, 1629–1676. MR 4078691, DOI 10.4310/MRL.2019.v26.n6.a4
- N. Green. Tensor powers of rank 1 Drinfeld modules and periods. to appear, J. Number Theory, arXiv:1706.03854, 2017.
- Nathan Green and Matthew A. Papanikolas, Special $L$-values and shtuka functions for Drinfeld modules on elliptic curves, Res. Math. Sci. 5 (2018), no. 1, Paper No. 4, 47. MR 3756176, DOI 10.1007/s40687-018-0122-8
- Federico Pellarin, Values of certain $L$-series in positive characteristic, Ann. of Math. (2) 176 (2012), no. 3, 2055–2093. MR 2979866, DOI 10.4007/annals.2012.176.3.13
- F. Pellarin. On the behaviour at the cusps of Drinfeld modular forms. arXiv:1910.12743, 2019.
- F. Pellarin and R. Perkins. On twisted $A$-harmonic sums and Carlitz finite zeta values. to appear, J. Number Theory, arXiv:1512.05953, 2015.
- Federico Pellarin and Rudolph B. Perkins, Vectorial Drinfeld modular forms over Tate algebras, Int. J. Number Theory 14 (2018), no. 6, 1729–1783. MR 3827958, DOI 10.1142/S1793042118501063
- Lenny Taelman, A Dirichlet unit theorem for Drinfeld modules, Math. Ann. 348 (2010), no. 4, 899–907. MR 2721645, DOI 10.1007/s00208-010-0506-6
- Lenny Taelman, Special $L$-values of Drinfeld modules, Ann. of Math. (2) 175 (2012), no. 1, 369–391. MR 2874646, DOI 10.4007/annals.2012.175.1.10
- Dinesh S. Thakur, Function field arithmetic, World Scientific Publishing Co., Inc., River Edge, NJ, 2004. MR 2091265, DOI 10.1142/9789812562388
- Dinesh S. Thakur, Multizeta values for function fields: a survey, J. Théor. Nombres Bordeaux 29 (2017), no. 3, 997–1023 (English, with English and French summaries). MR 3745257
Additional Information
- Huy Hung Le
- Affiliation: Université de Caen Normandie, Laboratoire de Mathématiques Nicolas Oresme, CNRS UMR 6139, Campus II, Boulevard Maréchal Juin, B.P. 5186, 14032 Caen Cedex, France
- ORCID: 0000-0002-0451-3191
- Email: huy-hung.le@unicaen.fr
- Tuan Ngo Dac
- Affiliation: CNRS - Université Claude Bernard Lyon 1, Institut Camille Jordan, UMR 5208, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France
- MR Author ID: 688705
- Email: ngodac@math.univ-lyon1.fr
- Received by editor(s): June 15, 2020
- Received by editor(s) in revised form: October 9, 2020, and November 2, 2020
- Published electronically: April 27, 2021
- Additional Notes: The second author was partially supported by ANR Grant COLOSS ANR-19-CE40-0015-02. Both authors were partially supported by CNRS IEA “Arithmetic and Galois extensions of function fields” and the Labex MILYON ANR-10-LABX-0070
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 5623-5650
- MSC (2020): Primary 11M38, 11R58, 11G09
- DOI: https://doi.org/10.1090/tran/8357
- MathSciNet review: 4293782