Quadrilaterals inscribed in convex curves
HTML articles powered by AMS MathViewer
- by Benjamin Matschke PDF
- Trans. Amer. Math. Soc. 374 (2021), 5719-5738
Abstract:
We classify the set of quadrilaterals that can be inscribed in convex Jordan curves, in the continuous as well as in the smooth case. This answers a question of Makeev in the special case of convex curves. The difficulty of this problem comes from the fact that standard topological arguments to prove the existence of solutions do not apply here due to the lack of sufficient symmetry. Instead, the proof makes use of an area argument of Karasev and Tao, which we furthermore simplify and elaborate on. The continuous case requires an additional analysis of the singular points, and a small miracle, which then extends to show that the problems of inscribing isosceles trapezoids in smooth curves and in piecewise $C^1$ curves are equivalent.References
- Arseniy Akopyan and Sergey Avvakumov, Any cyclic quadrilateral can be inscribed in any closed convex smooth curve, Forum Math. Sigma 6 (2018), Paper No. e7, 9. MR 3810027, DOI 10.1017/fms.2018.7
- Jason Cantarella, Elizabeth Denne, and John McCleary, Transversality in Configuration Spaces and the “Square-Peg” Problem, arXiv:1402.6174, 2014, 32 pages.
- C. M. Christensen, A square inscribed in a convex figure, Mat. Tidsskr. B 1950 (1950), 22–26 (Danish). MR 39284
- Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann, Singular 4-1-0 — A computer algebra system for polynomial computations, https://www.singular.uni-kl.de, 2016.
- Elizabeth Denne, Inscribed squares: Denne speaks, http://quomodocumque.wordpress.com/2007/08/31/inscribed-squares-denne-speaks/, 2007, Guest post on Jordan S. Ellenberg’s blog Quomodocumque.
- The Sage Developers, SageMath (Version 8.0), 2017, http://www.sagemath.org.
- Arnold Emch, Some Properties of Closed Convex Curves in a Plane, Amer. J. Math. 35 (1913), no. 4, 407–412. MR 1506193, DOI 10.2307/2370404
- Arnold Emch, On the Medians of a Closed Convex Polygon, Amer. J. Math. 37 (1915), no. 1, 19–28. MR 1506239, DOI 10.2307/2370252
- Arnold Emch, On Some Properties of the Medians of Closed Continuous Curves Formed by Analytic Arcs, Amer. J. Math. 38 (1916), no. 1, 6–18. MR 1506274, DOI 10.2307/2370541
- Joshua E. Greene and Andrew Lobb, Cyclic quadrilaterals and smooth Jordan curves, arXiv:2011.05216, 2020, 4 pages.
- Joshua E. Greene and Andrew Lobb, The Rectangular Peg Problem, arXiv:2005.09193, 2020, 6 pages.
- Victor Guillemin and Alan Pollack, Differential topology, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. MR 0348781
- C. M. Hebbert, The inscribed and circumscribed squares of a quadrilateral and their significance in kinematic geometry, Ann. of Math. (2) 16 (1914/15), no. 1-4, 38–42. MR 1502485, DOI 10.2307/1968039
- Wouter van Heijst, Master thesis, 2014, in preparation.
- R. P. Jerrard, Inscribed squares in plane curves, Trans. Amer. Math. Soc. 98 (1961), 234–241. MR 120604, DOI 10.1090/S0002-9947-1961-0120604-3
- R. N. Karasëv, Topological methods in combinatorial geometry, Uspekhi Mat. Nauk 63 (2008), no. 6(384), 39–90 (Russian, with Russian summary); English transl., Russian Math. Surveys 63 (2008), no. 6, 1031–1078. MR 2492772, DOI 10.1070/RM2008v063n06ABEH004578
- Roman N. Karasëv, A note on Makeev’s conjectures, J. Math. Sci. 212 (2016), no. 5, 521–526.
- Victor Klee and Stan Wagon, Alte und neue ungelöste Probleme in der Zahlentheorie und Geometrie der Ebene, Birkhäuser Verlag, Basel, 1997 (German, with German summary). Translated from the 1991 English original by Manfred Stern. MR 1681832, DOI 10.1007/978-3-0348-6073-4
- V. V. Makeev, On quadrangles inscribed in a closed curve, Mat. Zametki 57 (1995), no. 1, 129–132 (Russian); English transl., Math. Notes 57 (1995), no. 1-2, 91–93. MR 1339220, DOI 10.1007/BF02309400
- Vladimir V. Makeev, On quadrangles inscribed in a closed curve and the vertices of the curve, J. Math. Sci. 131 (2005), no. 1, 5395–5400.
- Benjamin Matschke. On the Square Peg Problem and some relatives. arXiv:1001.0186, 2009.
- Benjamin Matschke, Equivariant topology methods in discrete geometry, Ph.D. thesis, Freie Universität Berlin, 2011.
- Benjamin Matschke, A survey on the square peg problem, Notices Amer. Math. Soc. 61 (2014), no. 4, 346–352. MR 3184501, DOI 10.1090/noti1100
- Mark D. Meyerson, Equilateral triangles and continuous curves, Fund. Math. 110 (1980), no. 1, 1–9. MR 600575, DOI 10.4064/fm-110-1-1-9
- Mark J. Nielsen, Triangles inscribed in simple closed curves, Geom. Dedicata 43 (1992), no. 3, 291–297. MR 1181760, DOI 10.1007/BF00151519
- Mark J. Nielsen, Web page on Figures Inscribed in Curves, http://www.webpages.uidaho.edu/~markn/squares/, 2000.
- Mark J. Nielsen and S. E. Wright, Rectangles inscribed in symmetric continua, Geom. Dedicata 56 (1995), no. 3, 285–297. MR 1340790, DOI 10.1007/BF01263570
- Igor Pak, Lectures on Discrete and Polyhedral Geometry, http://www.math.ucla.edu/~pak/book.htm, 2010.
- Ville H. Pettersson, Helge A. Tverberg, and Patric R. J. Östergård, A note on Toeplitz’ conjecture, Discrete Comput. Geom. 51 (2014), no. 3, 722–728. MR 3201252, DOI 10.1007/s00454-014-9578-5
- Jürgen Richter-Gebert and Ulrich H. Kortenkamp, The Cinderella.2 Manual, Springer-Verlag, 2012.
- Feliú Sagols and Raúl Marín, The inscribed square conjecture in the digital plane, Combinatorial image analysis, Lecture Notes in Comput. Sci., vol. 5852, Springer, Berlin, 2009, pp. 411–424. MR 2670395, DOI 10.1007/978-3-642-10210-3_{3}2
- Feliú Sagols and Raúl Marín, Two discrete versions of the inscribed square conjecture and some related problems, Theoret. Comput. Sci. 412 (2011), no. 15, 1301–1312. MR 2798015, DOI 10.1016/j.tcs.2010.10.004
- Lev G. Schnirelman, On some geometric properties of closed curves, (in Russian) Usp. Mat. Nauk 10 (1944), 34–44, Available at http://ega-math.narod.ru/Nquant/Square.djv. Posthumous reproduction and extension of the author’s original article in Sbornik Rabot Matematičeskogo Razdela Sekcii Estestvennyh i Točnyh Nauk Komakademii, Moscow, 1929.
- Walter Stromquist, Inscribed squares and square-like quadrilaterals in closed curves, Mathematika 36 (1989), no. 2, 187–197 (1990). MR 1045781, DOI 10.1112/S0025579300013061
- Terence Tao, An integration approach to the Toeplitz square peg problem, Forum Math. Sigma 5 (2017), Paper No. e30, 63. MR 3731730, DOI 10.1017/fms.2017.23
- Otto Toeplitz, Ueber einige Aufgaben der Analysis situs, Verhandlungen der Schweizerischen Naturforschenden Gesellschaft in Solothurn 4 (1911), 197.
- Siniša T. Vrećica and Rade T. Živaljević, Fulton-MacPherson compactification, cyclohedra, and the polygonal pegs problem, Israel J. Math. 184 (2011), 221–249. MR 2823976, DOI 10.1007/s11856-011-0066-9
- Ying-Qing Wu, Inscribing smooth knots with regular polygons, Bull. London Math. Soc. 36 (2004), no. 2, 176–180. MR 2026410, DOI 10.1112/S0024609303002662
- Konrad Von Zindler, Über konvexe Gebilde, Monatsh. Math. Phys. 31 (1921), no. 1, 25–56 (German). MR 1549095, DOI 10.1007/BF01702711
Additional Information
- Benjamin Matschke
- Affiliation: Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215
- MR Author ID: 929414
- ORCID: 0000-0003-0574-6840
- Email: matschke@bu.edu
- Received by editor(s): November 10, 2020
- Received by editor(s) in revised form: November 13, 2020, November 24, 2020, and November 28, 2020
- Published electronically: May 7, 2021
- Additional Notes: This research was supported by the Initiative d’excellence de l’Université de Bordeaux (IdEx) and by Simons Foundation grant #550023 at Boston University.
- © Copyright 2021 Benjamin Matschke
- Journal: Trans. Amer. Math. Soc. 374 (2021), 5719-5738
- MSC (2020): Primary 53A04; Secondary 55R80, 55M20
- DOI: https://doi.org/10.1090/tran/8359
- MathSciNet review: 4293786