Einstein extensions of Riemannian manifolds
HTML articles powered by AMS MathViewer
- by D. Alekseevsky and Y. Nikolayevsky PDF
- Trans. Amer. Math. Soc. 374 (2021), 6059-6083 Request permission
Abstract:
Given a Riemannian space $N$ of dimension $n$ and a field $D$ of symmetric endomorphisms on $N$, we define the extension $M$ of $N$ by $D$ to be the Riemannian manifold of dimension $n+1$ obtained from $N$ by a construction similar to extending a Lie group by a derivation of its Lie algebra. We find the conditions on $N$ and $D$ which imply that the extension $M$ is Einstein. In particular, we show that in this case, $D$ has constant eigenvalues; moreover, they are all integer (up to scaling) if $\det D \ne 0$. They must satisfy certain arithmetic relations which imply that there are only finitely many eigenvalue types of $D$ in every dimension (a similar result is known for Einstein solvmanifolds). We give the characterisation of Einstein extensions for particular eigenvalue types of $D$, including the complete classification for the case when $D$ has two eigenvalues, one of which is multiplicity free. In the most interesting case, the extension is obtained, by an explicit procedure, from an almost Kähler Ricci flat manifold (in particular, from a Calabi-Yau manifold). We also show that all Einstein extensions of dimension four are Einstein solvmanifolds. A similar result holds valid in the case when $N$ is a Lie group with a left-invariant metric, under some additional assumptions.References
- D. V. Alekseevskiĭ, Homogeneous Riemannian spaces of negative curvature, Mat. Sb. (N.S.) 96(138) (1975), 93–117, 168 (Russian). MR 0362145
- D. V. Alekseevskiĭ and B. N. Kimel′fel′d, Structure of homogeneous Riemannian spaces with zero Ricci curvature, Funkcional. Anal. i PriloŽen. 9 (1975), no. 2, 5–11 (Russian). MR 0402650
- Lionel Bérard-Bergery, Sur la courbure des métriques riemanniennes invariantes des groupes de Lie et des espaces homogènes, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 543–576 (French). MR 533067
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- David E. Blair, Riemannian geometry of contact and symplectic manifolds, 2nd ed., Progress in Mathematics, vol. 203, Birkhäuser Boston, Ltd., Boston, MA, 2010. MR 2682326, DOI 10.1007/978-0-8176-4959-3
- Christoph Böhm and Ramiro A. Lafuente, Homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds, arXiv:1811.12594, 2018.
- Charles P. Boyer and Krzysztof Galicki, Einstein manifolds and contact geometry, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2419–2430. MR 1823927, DOI 10.1090/S0002-9939-01-05943-3
- Charles P. Boyer and Krzysztof Galicki, Sasakian geometry, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2008. MR 2382957
- J.-H. Eschenburg and McKenzie Y. Wang, The initial value problem for cohomogeneity one Einstein metrics, J. Geom. Anal. 10 (2000), no. 1, 109–137. MR 1758585, DOI 10.1007/BF02921808
- Carolyn S. Gordon and Edward N. Wilson, Isometry groups of Riemannian solvmanifolds, Trans. Amer. Math. Soc. 307 (1988), no. 1, 245–269. MR 936815, DOI 10.1090/S0002-9947-1988-0936815-X
- Chenxu He, Peter Petersen, and William Wylie, On the classification of warped product Einstein metrics, Comm. Anal. Geom. 20 (2012), no. 2, 271–311. MR 2928714, DOI 10.4310/CAG.2012.v20.n2.a3
- Chenxu He, Peter Petersen, and William Wylie, Warped product Einstein metrics on homogeneous spaces and homogeneous Ricci solitons, J. Reine Angew. Math. 707 (2015), 217–245. MR 3403459, DOI 10.1515/crelle-2013-0078
- Jens Heber, Noncompact homogeneous Einstein spaces, Invent. Math. 133 (1998), no. 2, 279–352. MR 1632782, DOI 10.1007/s002220050247
- Sigbjørn Hervik, Einstein metrics: homogeneous solvmanifolds, generalised Heisenberg groups and black holes, J. Geom. Phys. 52 (2004), no. 3, 298–312. MR 2099155, DOI 10.1016/j.geomphys.2004.03.005
- N. Jacobson, A note on automorphisms and derivations of Lie algebras, Proc. Amer. Math. Soc. 6 (1955), 281–283. MR 68532, DOI 10.1090/S0002-9939-1955-0068532-9
- Jorge Lauret, Einstein solvmanifolds and nilsolitons, New developments in Lie theory and geometry, Contemp. Math., vol. 491, Amer. Math. Soc., Providence, RI, 2009, pp. 1–35. MR 2537049, DOI 10.1090/conm/491/09607
- Jorge Lauret, Einstein solvmanifolds are standard, Ann. of Math. (2) 172 (2010), no. 3, 1859–1877. MR 2726101, DOI 10.4007/annals.2010.172.1859
- Y. Nikolayevsky, Einstein solvmanifolds and the pre-Einstein derivation, Trans. Amer. Math. Soc. 363 (2011), no. 8, 3935–3958. MR 2792974, DOI 10.1090/S0002-9947-2011-05045-2
- PawełNurowski and Maciej Przanowski, A four-dimensional example of a Ricci flat metric admitting almost-Kähler non-Kähler structure, Classical Quantum Gravity 16 (1999), no. 3, L9–L13. MR 1682582, DOI 10.1088/0264-9381/16/3/002
Additional Information
- D. Alekseevsky
- Affiliation: IITP, Russian Academy of Sciences, Moscow 127051, Russia; and University of Hradec Králové, Faculty of Science, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
- MR Author ID: 226278
- ORCID: 0000-0002-6622-7975
- Email: dalekseevsky@iitp.ru
- Y. Nikolayevsky
- Affiliation: Department of Mathematics and Statistics, La Trobe University, Melbourne 3086, Australia
- MR Author ID: 246384
- ORCID: 0000-0002-9528-1882
- Email: y.nikolayevsky@latrobe.edu.au
- Received by editor(s): October 22, 2018
- Received by editor(s) in revised form: July 19, 2020
- Published electronically: June 7, 2021
- Additional Notes: The authors were partially supported by ARC Discovery Grant DP130103485
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 6059-6083
- MSC (2020): Primary 53C25, 53B20; Secondary 53C30
- DOI: https://doi.org/10.1090/tran/8259
- MathSciNet review: 4302155