Non-polyhedral effective cones from the moduli space of curves
HTML articles powered by AMS MathViewer
- by Scott Mullane PDF
- Trans. Amer. Math. Soc. 374 (2021), 6397-6415 Request permission
Abstract:
We show that the pseudoeffective cone of divisors $\overline {\text {Eff}}^1(\overline {\mathcal {M}}_{{g}, {n}})$ for $g\geq 2$ and $n\geq 2$ is not polyhedral by showing that the class of the fibre of the morphism forgetting one point forms an extremal ray of the dual nef cone of curves $\overline {\text {Nef}}_1(\overline {\mathcal {M}}_{{g}, {n}})$ and the cone at this ray is not polyhedral.References
- Enrico Arbarello and Maurizio Cornalba, The Picard groups of the moduli spaces of curves, Topology 26 (1987), no. 2, 153–171. MR 895568, DOI 10.1016/0040-9383(87)90056-5
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
- Ana-Maria Castravet and Jenia Tevelev, Hypertrees, projections, and moduli of stable rational curves, J. Reine Angew. Math. 675 (2013), 121–180. MR 3021449, DOI 10.1515/crelle.2011.189
- Ana-Maria Castravet and Jenia Tevelev, $\overline {M}_{0,n}$ is not a Mori dream space, Duke Math. J. 164 (2015), no. 8, 1641–1667. MR 3352043, DOI 10.1215/00127094-3119846
- Dawei Chen and Izzet Coskun, Extremal effective divisors on $\overline {\scr {M}}_{1,n}$, Math. Ann. 359 (2014), no. 3-4, 891–908. MR 3231020, DOI 10.1007/s00208-014-1027-5
- David Eisenbud and Joe Harris, The Kodaira dimension of the moduli space of curves of genus $\geq 23$, Invent. Math. 90 (1987), no. 2, 359–387. MR 910206, DOI 10.1007/BF01388710
- Carel Faber, Chow rings of moduli spaces of curves. I. The Chow ring of $\overline {\scr M}_3$, Ann. of Math. (2) 132 (1990), no. 2, 331–419. MR 1070600, DOI 10.2307/1971525
- Gavril Farkas, The geometry of the moduli space of curves of genus 23, Math. Ann. 318 (2000), no. 1, 43–65. MR 1785575, DOI 10.1007/s002080000108
- Gavril Farkas, Koszul divisors on moduli spaces of curves, Amer. J. Math. 131 (2009), no. 3, 819–867. MR 2530855, DOI 10.1353/ajm.0.0053
- Gavril Farkas and Mihnea Popa, Effective divisors on $\overline {\scr M}_g$, curves on $K3$ surfaces, and the slope conjecture, J. Algebraic Geom. 14 (2005), no. 2, 241–267. MR 2123229, DOI 10.1090/S1056-3911-04-00392-3
- Gavril Farkas and Alessandro Verra, The classification of universal Jacobians over the moduli space of curves, Comment. Math. Helv. 88 (2013), no. 3, 587–611. MR 3093504, DOI 10.4171/CMH/297
- Gavril Farkas and Alessandro Verra, The universal theta divisor over the moduli space of curves, J. Math. Pures Appl. (9) 100 (2013), no. 4, 591–605 (English, with English and French summaries). MR 3102167, DOI 10.1016/j.matpur.2013.01.014
- José Luis González and Kalle Karu, Some non-finitely generated Cox rings, Compos. Math. 152 (2016), no. 5, 984–996. MR 3505645, DOI 10.1112/S0010437X15007745
- J. Harris, On the Kodaira dimension of the moduli space of curves. II. The even-genus case, Invent. Math. 75 (1984), no. 3, 437–466. MR 735335, DOI 10.1007/BF01388638
- Joe Harris and Ian Morrison, Moduli of curves, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998. MR 1631825
- Joe Harris and David Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), no. 1, 23–88. With an appendix by William Fulton. MR 664324, DOI 10.1007/BF01393371
- Brendan Hassett and Yuri Tschinkel, On the effective cone of the moduli space of pointed rational curves, Topology and geometry: commemorating SISTAG, Contemp. Math., vol. 314, Amer. Math. Soc., Providence, RI, 2002, pp. 83–96. MR 1941624, DOI 10.1090/conm/314/05424
- Jürgen Hausen, Simon Keicher, and Antonio Laface, On blowing up the weighted projective plane, Math. Z. 290 (2018), no. 3-4, 1339–1358. MR 3856856, DOI 10.1007/s00209-018-2065-6
- Yi Hu and Sean Keel, Mori dream spaces and GIT, Michigan Math. J. 48 (2000), 331–348. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786494, DOI 10.1307/mmj/1030132722
- Seán Keel, Basepoint freeness for nef and big line bundles in positive characteristic, Ann. of Math. (2) 149 (1999), no. 1, 253–286. MR 1680559, DOI 10.2307/121025
- Scott Mullane, On the effective cone of $\overline {\mathcal M}_{g,n}$, Adv. Math. 320 (2017), 500–519. MR 3709113, DOI 10.1016/j.aim.2017.09.005
- S. Mullane, $k$-differentials on curves and rigid cycles in moduli space, arXiv:1905.03241.
- Morgan Opie, Extremal divisors on moduli spaces of rational curves with marked points, Michigan Math. J. 65 (2016), no. 2, 251–285. MR 3510907, DOI 10.1307/mmj/1465329013
- William Frederick Rulla, The birational geometry of moduli space M(3) and moduli space M(2,1), ProQuest LLC, Ann Arbor, MI, 2001. Thesis (Ph.D.)–The University of Texas at Austin. MR 2701950
- Peter Vermeire, A counterexample to Fulton’s conjecture on $\overline M_{0,n}$, J. Algebra 248 (2002), no. 2, 780–784. MR 1882122, DOI 10.1006/jabr.2001.9044
Additional Information
- Scott Mullane
- Affiliation: Institut für Mathematik, Goethe-Universität Frankfurt, Robert-Mayer-Str. 6-8, 60325 Frankfurt am Main, Germany
- MR Author ID: 1215575
- Email: mullane@math.uni-frankfurt.de
- Received by editor(s): March 4, 2020
- Received by editor(s) in revised form: December 11, 2020
- Published electronically: June 7, 2021
- Additional Notes: The author was supported by the Alexander von Humboldt Foundation during the preparation of this article.
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 6397-6415
- MSC (2020): Primary 14H10; Secondary 14C25, 14C20
- DOI: https://doi.org/10.1090/tran/8365
- MathSciNet review: 4302164