On CW-complexes over groups with periodic cohomology
HTML articles powered by AMS MathViewer
- by John Nicholson PDF
- Trans. Amer. Math. Soc. 374 (2021), 6531-6557 Request permission
Abstract:
If $G$ has $4$-periodic cohomology, then finite D2 complexes over $G$ are determined up to polarised homotopy by their Euler characteristic if and only if $G$ has at most two one-dimensional quaternionic representations. We use this to solve Wall’s D2 problem for several infinite families of non-abelian groups and, in these cases, also show that any finite Poincaré $3$-complex $X$ with $G=\pi _1(X)$ admits a cell structure with a single $3$-cell. The proof involves cancellation theorems for $\mathbb {Z} G$ modules where $G$ has periodic cohomology.References
- F. Rudolf Beyl and Nancy Waller, A stably free nonfree module and its relevance for homotopy classification, case $Q_{28}$, Algebr. Geom. Topol. 5 (2005), 899–910. MR 2171797, DOI 10.2140/agt.2005.5.899
- Wesley James Browning, HOMOTOPY TYPES OF CERTAIN FINITE CW-COMPLEXES WITH FINITE FUNDAMENTAL GROUP, ProQuest LLC, Ann Arbor, MI, 1978. Thesis (Ph.D.)–Cornell University. MR 2628267
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Joel M. Cohen, Complexes dominated by a $2$-complex, Topology 16 (1977), no. 4, 409–415. MR 461485, DOI 10.1016/0040-9383(77)90045-3
- Joel M. Cohen, On the number of generators of a module, J. Pure Appl. Algebra 12 (1978), no. 1, 15–19. MR 488810, DOI 10.1016/0022-4049(78)90018-X
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1990. With applications to finite groups and orders; Reprint of the 1981 original; A Wiley-Interscience Publication. MR 1038525
- James Frederic Davis, EVALUATION OF THE SWAN FINITENESS OBSTRUCTION, ProQuest LLC, Ann Arbor, MI, 1982. Thesis (Ph.D.)–Stanford University. MR 2631814
- Micheal N. Dyer, On the $2$-realizability of $2$-types, Trans. Amer. Math. Soc. 204 (1975), 229–243. MR 380783, DOI 10.1090/S0002-9947-1975-0380783-X
- A. Fröhlich, Locally free modules over arithmetic orders, J. Reine Angew. Math. 274/275 (1975), 112–138.
- Ian Hambleton, Two remarks on Wall’s D2 problem, Math. Proc. Cambridge Philos. Soc. 167 (2019), no. 2, 361–368. MR 3991378, DOI 10.1017/s0305004118000385
- Jens Harlander, Some aspects of efficiency, Groups—Korea ’98 (Pusan), de Gruyter, Berlin, 2000, pp. 165–180. MR 1751092
- H. Jacobinski, Genera and decompositions of lattices over orders, Acta Math. 121 (1968), 1–29. MR 251063, DOI 10.1007/BF02391907
- F. E. A. Johnson, Minimal 2-complexes and the $\rm D(2)$-problem, Proc. Amer. Math. Soc. 132 (2004), no. 2, 579–586. MR 2022384, DOI 10.1090/S0002-9939-03-07068-0
- F. E. A. Johnson, Stable modules and the $D(2)$-problem, London Mathematical Society Lecture Note Series, vol. 301, Cambridge University Press, Cambridge, 2003. MR 2012779, DOI 10.1017/CBO9780511550256
- F. E. A. Johnson, Stable modules and Wall’s $D(2)$-problem, Comment. Math. Helv. 78 (2003), no. 1, 18–44. MR 1966750, DOI 10.1007/s000140300001
- L. G. Kovács, Finite groups with trivial multiplicator and large deficiency, Groups–Korea 94: Proceedings of the International Conference held at Pusan (1994).
- Bruce Magurn, Robert Oliver, and Leonid Vaserstein, Units in Whitehead groups of finite groups, J. Algebra 84 (1983), no. 2, 324–360. MR 723396, DOI 10.1016/0021-8693(83)90082-0
- W. H. Mannan, Realizing algebraic 2-complexes by cell complexes, Math. Proc. Cambridge Philos. Soc. 146 (2009), no. 3, 671–673. MR 2496351, DOI 10.1017/S0305004108002107
- W. H. Mannan and T. Popiel, An exotic presentation of $Q_{28}$, Algebr. Geom. Topol., to appear, arXiv:1901.10786 (2021).
- Wolfgang Metzler and Stephan Rosebrock (eds.), Advances in two-dimensional homotopy and combinatorial group theory, London Mathematical Society Lecture Note Series, vol. 446, Cambridge University Press, Cambridge, 2018. MR 3751362
- R. James Milgram, Evaluating the Swan finiteness obstruction for periodic groups, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 127–158. MR 802788, DOI 10.1007/BFb0074441
- John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0349811
- John Milnor, Groups which act on $S^n$ without fixed points, Amer. J. Math. 79 (1957), 623–630. MR 90056, DOI 10.2307/2372566
- B. H. Neumann, Yet more on finite groups with few defining relations, Group theory (Singapore, 1987) de Gruyter, Berlin, 1989, pp. 183–193. MR 981841
- J. Nicholson, A cancellation theorem for modules over integral group rings, Math. Proc. Cambridge Philos. Soc., to appear, arXiv:1807.00307 (2021).
- J. Nicholson, Projective modules and the homotopy classification of $(G,n)$-complexes, arXiv:2004.04252 (2020).
- Paul Olum, Self-equivalences of pseudo-projective planes, Topology 4 (1965), 109–127. MR 178468, DOI 10.1016/0040-9383(65)90053-4
- John R. Stallings, On torsion-free groups with infinitely many ends, Ann. of Math. (2) 88 (1968), 312–334. MR 228573, DOI 10.2307/1970577
- Richard G. Swan, Groups of cohomological dimension one, J. Algebra 12 (1969), 585–610. MR 240177, DOI 10.1016/0021-8693(69)90030-1
- Richard G. Swan, Groups with no odd dimensional cohomology, J. Algebra 17 (1971), 401–403. MR 272873, DOI 10.1016/0021-8693(71)90021-4
- Richard G. Swan, $K$-theory of finite groups and orders, Lecture Notes in Mathematics, Vol. 149, Springer-Verlag, Berlin-New York, 1970. MR 0308195
- Richard G. Swan, Minimal resolutions for finite groups, Topology 4 (1965), 193–208. MR 179234, DOI 10.1016/0040-9383(65)90064-9
- Richard G. Swan, Induced representations and projective modules, Ann. of Math. (2) 71 (1960), 552–578. MR 138688, DOI 10.2307/1969944
- Richard G. Swan, Periodic resolutions for finite groups, Ann. of Math. (2) 72 (1960), 267–291. MR 124895, DOI 10.2307/1970135
- Richard G. Swan, Projective modules over binary polyhedral groups, J. Reine Angew. Math. 342 (1983), 66–172. MR 703486, DOI 10.1515/crll.1983.342.66
- Richard G. Swan, Projective modules over group rings and maximal orders, Ann. of Math. (2) 76 (1962), 55–61. MR 139635, DOI 10.2307/1970264
- Richard G. Swan, Strong approximation and locally free modules, Ring theory and algebra, III (Proc. Third Conf., Univ. Oklahoma, Norman, Okla., 1979) Lecture Notes in Pure and Appl. Math., vol. 55, Dekker, New York, 1980, pp. 153–223. MR 584612
- C. T. C. Wall, Finiteness conditions for $\textrm {CW}$-complexes, Ann. of Math. (2) 81 (1965), 56–69. MR 171284, DOI 10.2307/1970382
- C. T. C. Wall, Finiteness conditions for $\textrm {CW}$ complexes. II, Proc. Roy. Soc. London Ser. A 295 (1966), 129–139. MR 211402, DOI 10.1098/rspa.1966.0230
- C. T. C. Wall (ed.), Homological group theory, London Mathematical Society Lecture Note Series, vol. 36, Cambridge University Press, Cambridge-New York, 1979. MR 564417
- C. T. C. Wall, Periodic projective resolutions, Proc. London Math. Soc. (3) 39 (1979), no. 3, 509–553. MR 550082, DOI 10.1112/plms/s3-39.3.509
- C. T. C. Wall, Poincaré complexes. I, Ann. of Math. (2) 86 (1967), 213–245. MR 217791, DOI 10.2307/1970688
- Joseph A. Wolf, Spaces of constant curvature, 3rd ed., Publish or Perish, Inc., Boston, Mass., 1974. MR 0343214
Additional Information
- John Nicholson
- Affiliation: Department of Mathematics, UCL, Gower Street, London, WC1E 6BT, United Kingdom
- ORCID: 0000-0002-5244-5453
- Email: j.k.nicholson@ucl.ac.uk
- Received by editor(s): August 4, 2019
- Received by editor(s) in revised form: January 4, 2021
- Published electronically: May 18, 2021
- Additional Notes: This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) grant EP/N509577/1
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 6531-6557
- MSC (2020): Primary 57K20; Secondary 20C05, 57P10, 57Q12
- DOI: https://doi.org/10.1090/tran/8411
- MathSciNet review: 4302168