Evaluating the Mahler measure of linear forms via the Kronecker limit formula on complex projective space
HTML articles powered by AMS MathViewer
- by James Cogdell, Jay Jorgenson and Lejla Smajlović PDF
- Trans. Amer. Math. Soc. 374 (2021), 6769-6796 Request permission
Abstract:
In Cogdell et al., LMS Lecture Notes Series 459, 393–427 (2020), the authors proved an analogue of Kronecker’s limit formula associated to any divisor $\mathcal D$ which is smooth in codimension one on any smooth Kähler manifold $X$. In the present article, we apply the aforementioned Kronecker limit formula in the case when $X$ is complex projective space $\mathbb {C}\mathbb {P}^n$ for $n \geq 2$ and $\mathcal D$ is a hyperplane, meaning the divisor of a linear form $P_D({z})$ for ${z} = (\mathcal {Z}_{j}) \in \mathbb {C}\mathbb {P}^n$. Our main result is an explicit evaluation of the Mahler measure of $P_{D}$ as a convergent series whose each term is given in terms of rational numbers, multinomial coefficients, and the $L^{2}$-norm of the vector of coefficients of $P_{D}$.References
- G. Anton, J. A. Malathu, and S. Stinson, On an approximation of a J-Bessel integral and its applications (with an appendix by J.S. Friedman) arxiv.org 2012.04165.
- Xiao-Xi Bai and Yu-Qiu Zhao, A uniform asymptotic expansion for Jacobi polynomials via uniform treatment of Darboux’s method, J. Approx. Theory 148 (2007), no. 1, 1–11. MR 2356572, DOI 10.1016/j.jat.2007.02.001
- Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971 (French). MR 0282313
- Enrico Bombieri and Walter Gubler, Heights in Diophantine geometry, New Mathematical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006. MR 2216774, DOI 10.1017/CBO9780511542879
- Jonathan M. Borwein, Armin Straub, James Wan, and Wadim Zudilin, Densities of short uniform random walks, Canad. J. Math. 64 (2012), no. 5, 961–990. With an appendix by Don Zagier. MR 2979573, DOI 10.4153/CJM-2011-079-2
- David W. Boyd, Speculations concerning the range of Mahler’s measure, Canad. Math. Bull. 24 (1981), no. 4, 453–469. MR 644535, DOI 10.4153/CMB-1981-069-5
- David W. Boyd, Mahler’s measure and special values of $L$-functions, Experiment. Math. 7 (1998), no. 1, 37–82. MR 1618282
- J. Cogdell, J. Jorgenson, and L. Smajlović, Spectral construction of non-holomorphic Eisenstein-type series and their Kronecker limit formula, Integrability systems and algebraic geometry, London Math. Soc. Lecture Note Ser., 459, Cambridge Univ. Press, Cambridge, 2020, 393–427.
- Christopher Deninger, Deligne periods of mixed motives, $K$-theory and the entropy of certain $\textbf {Z}^n$-actions, J. Amer. Math. Soc. 10 (1997), no. 2, 259–281. MR 1415320, DOI 10.1090/S0894-0347-97-00228-2
- Christopher Deninger, Mahler measures and Fuglede-Kadison determinants, Münster J. Math. 2 (2009), 45–63. MR 2545607
- Christopher Deninger, Regulators, entropy and infinite determinants, Regulators, Contemp. Math., vol. 571, Amer. Math. Soc., Providence, RI, 2012, pp. 117–134. MR 2953411, DOI 10.1090/conm/571/11324
- Gerald B. Folland, Introduction to partial differential equations, Mathematical Notes, Princeton University Press, Princeton, N.J., 1976. Preliminary informal notes of university courses and seminars in mathematics. MR 0599578
- C. L. Frenzen and R. Wong, A uniform asymptotic expansion of the Jacobi polynomials with error bounds, Canad. J. Math. 37 (1985), no. 5, 979–1007. MR 806651, DOI 10.4153/CJM-1985-053-5
- Henri Gillet and Christophe Soulé, Characteristic classes for algebraic vector bundles with Hermitian metric. II, Ann. of Math. (2) 131 (1990), no. 2, 205–238. MR 1043268, DOI 10.2307/1971493
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007. Translated from the Russian; Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger; With one CD-ROM (Windows, Macintosh and UNIX). MR 2360010
- Eric L. Grinberg, Spherical harmonics and integral geometry on projective spaces, Trans. Amer. Math. Soc. 279 (1983), no. 1, 187–203. MR 704609, DOI 10.1090/S0002-9947-1983-0704609-1
- Uffe Haagerup and Henrik Schlichtkrull, Inequalities for Jacobi polynomials, Ramanujan J. 33 (2014), no. 2, 227–246. MR 3165537, DOI 10.1007/s11139-013-9472-4
- Ali Hafoud and Ahmed Intissar, Représentation intégrale de noyau de la chaleur sur l’espace projectif complexe $\Bbb P^n(\Bbb C),\ n\geq 1$, C. R. Math. Acad. Sci. Paris 335 (2002), no. 11, 871–876 (French, with English and French summaries). MR 1952542, DOI 10.1016/S1631-073X(02)02582-7
- J. Jorgenson and J. Kramer, Towards the arithmetic degree of line bundles on abelian varieties, Manuscripta Math. 96 (1998), no. 3, 335–370. MR 1638161, DOI 10.1007/s002290050071
- J. C. Kluyver, A local probability problem, in: Royal Netherlands Academy of Arts and Sciences, Proceedings, 8 (1905), 341–350.
- Tom H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups, Special functions: group theoretical aspects and applications, Math. Appl., Reidel, Dordrecht, 1984, pp. 1–85. MR 774055
- I. Krasikov, Uniform bounds for Bessel functions, J. Appl. Anal. 12 (2006), no. 1, 83–91. MR 2243854, DOI 10.1515/JAA.2006.83
- Matilde Lalín and Tushant Mittal, The Mahler measure for arbitrary tori, Res. Number Theory 4 (2018), no. 2, Paper No. 16, 23. MR 3779137, DOI 10.1007/s40993-018-0112-3
- Serge Lang, Introduction to Arakelov theory, Springer-Verlag, New York, 1988. MR 969124, DOI 10.1007/978-1-4612-1031-3
- Lee Lorch, Alternative proof of a sharpened form of Bernstein’s inequality for Legendre polynomials, Applicable Anal. 14 (1982/83), no. 3, 237–240. MR 685160, DOI 10.1080/00036818308839426
- Qikeng Lu, The eigen functions of the complex projective space, Acta Math. Sinica (N.S.) 14 (1998), no. 1, 1–8. MR 1694052, DOI 10.1007/BF02563877
- Vincent Maillot, Géométrie d’Arakelov des variétés toriques et fibrés en droites intégrables, Mém. Soc. Math. Fr. (N.S.) 80 (2000), vi+129 (French, with English and French summaries). MR 1775582, DOI 10.24033/msmf.393
- Fernando Rodriguez-Villegas, Ricardo Toledano, and Jeffrey D. Vaaler, Estimates for Mahler’s measure of a linear form, Proc. Edinb. Math. Soc. (2) 47 (2004), no. 2, 473–494. MR 2081066, DOI 10.1017/S0013091503000701
- C. J. Smyth, On measures of polynomials in several variables, Bull. Austral. Math. Soc. 23 (1981), no. 1, 49–63. MR 615132, DOI 10.1017/S0004972700006894
- Chris Smyth, The Mahler measure of algebraic numbers: a survey, Number theory and polynomials, London Math. Soc. Lecture Note Ser., vol. 352, Cambridge Univ. Press, Cambridge, 2008, pp. 322–349. MR 2428530, DOI 10.1017/CBO9780511721274.021
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
Additional Information
- James Cogdell
- Affiliation: Department of Mathematics, Ohio State University, 231 W. 18th Ave., Columbus, Ohio 43210
- MR Author ID: 50230
- Email: cogdell@math.ohio-state.edu
- Jay Jorgenson
- Affiliation: Department of Mathematics, The City College of New York, Convent Avenue at 138th Street, New York, New York 10031
- MR Author ID: 292611
- Email: jjorgenson@mindspring.com
- Lejla Smajlović
- Affiliation: Department of Mathematics, University of Sarajevo, Zmaja od Bosne 35, 71 000 Sarajevo, Bosnia and Herzegovina
- ORCID: 0000-0002-2709-5535
- Email: lejlas@pmf.unsa.ba
- Received by editor(s): July 18, 2020
- Received by editor(s) in revised form: January 21, 2021, and March 10, 2021
- Published electronically: June 23, 2021
- Additional Notes: The second named author acknowledges grant support from several PSC-CUNY Awards, which are jointly funded by the Professional Staff Congress and The City University of New York
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 6769-6796
- MSC (2020): Primary 11R06, 11F72
- DOI: https://doi.org/10.1090/tran/8432
- MathSciNet review: 4302177