The Poisson problem for the fractional Hardy operator: Distributional identities and singular solutions
HTML articles powered by AMS MathViewer
- by Huyuan Chen and Tobias Weth PDF
- Trans. Amer. Math. Soc. 374 (2021), 6881-6925 Request permission
Abstract:
The purpose of this paper is to study and classify singular solutions of the Poisson problem \begin{equation*} \left \{ \begin {aligned} \mathcal {L}^s_\mu u = f \quad \ \text {in}\ \, \Omega \setminus \{0\},\\ u =0 \quad \ \text {in}\ \, \mathbb {R}^N \setminus \Omega \ \end{aligned} \right . \end{equation*} for the fractional Hardy operator $\mathcal {L}_\mu ^s u= (-\Delta )^s u +\frac {\mu }{|x|^{2s}}u$ in a bounded domain $\Omega \subset \mathbb {R}^N$ ($N \ge 2$) containing the origin. Here $(-\Delta )^s$, $s\in (0,1)$, is the fractional Laplacian of order $2s$, and $\mu \ge \mu _0$, where $\mu _0 = -2^{2s}\frac {\Gamma ^2(\frac {N+2s}4)}{\Gamma ^2(\frac {N-2s}{4})}<0$ is the best constant in the fractional Hardy inequality. The analysis requires a thorough study of fundamental solutions and associated distributional identities. Special attention will be given to the critical case $\mu = \mu _0$ which requires more subtle estimates than the case $\mu >\mu _0$.References
- Boumediene Abdellaoui, María Medina, Ireneo Peral, and Ana Primo, The effect of the Hardy potential in some Calderón-Zygmund properties for the fractional Laplacian, J. Differential Equations 260 (2016), no. 11, 8160–8206. MR 3479207, DOI 10.1016/j.jde.2016.02.016
- B. Barrios, M. Medina, and I. Peral, Some remarks on the solvability of non-local elliptic problems with the Hardy potential, Commun. Contemp. Math. 16 (2014), no. 4, 1350046, 29. MR 3231059, DOI 10.1142/S0219199713500466
- Mousomi Bhakta, Anup Biswas, Debdip Ganguly, and Luigi Montoro, Integral representation of solutions using Green function for fractional Hardy equations, J. Differential Equations 269 (2020), no. 7, 5573–5594. MR 4104934, DOI 10.1016/j.jde.2020.04.022
- Krzysztof Bogdan and Tomasz Byczkowski, Potential theory for the $\alpha$-stable Schrödinger operator on bounded Lipschitz domains, Studia Math. 133 (1999), no. 1, 53–92. MR 1671973, DOI 10.4064/sm-133-1-53-92
- Claudia Bucur and Enrico Valdinoci, Nonlocal diffusion and applications, Lecture Notes of the Unione Matematica Italiana, vol. 20, Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016. MR 3469920, DOI 10.1007/978-3-319-28739-3
- Haïm Brezis, Louis Dupaigne, and Alberto Tesei, On a semilinear elliptic equation with inverse-square potential, Selecta Math. (N.S.) 11 (2005), no. 1, 1–7. MR 2179651, DOI 10.1007/s00029-005-0003-z
- Luis Caffarelli and Luis Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245–1260. MR 2354493, DOI 10.1080/03605300600987306
- H. Chen, A. Quaas and F. Zhou, On nonhomogeneous elliptic equations with the Hardy-Leray potentials, J. d’Anal. Math., in press, arXiv:1705.08047.
- Huyuan Chen and Feng Zhou, Isolated singularities for elliptic equations with Hardy operator and source nonlinearity, Discrete Contin. Dyn. Syst. 38 (2018), no. 6, 2945–2964. MR 3809068, DOI 10.3934/dcds.2018126
- Huyuan Chen and Laurent Véron, Weak solutions of semilinear elliptic equations with Leray-Hardy potentials and measure data, Math. Eng. 1 (2019), no. 3, 391–418. MR 4136798, DOI 10.3934/mine.2019.3.391
- Florica C. Cîrstea, A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials, Mem. Amer. Math. Soc. 227 (2014), no. 1068, vi+85. MR 3135311
- Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573. MR 2944369, DOI 10.1016/j.bulsci.2011.12.004
- Louis Dupaigne, A nonlinear elliptic PDE with the inverse square potential, J. Anal. Math. 86 (2002), 359–398. MR 1894489, DOI 10.1007/BF02786656
- Serena Dipierro, Luigi Montoro, Ireneo Peral, and Berardino Sciunzi, Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 99, 29. MR 3528440, DOI 10.1007/s00526-016-1032-5
- Bartłomiej Dyda, Fractional Hardy inequality with a remainder term, Colloq. Math. 122 (2011), no. 1, 59–67. MR 2755892, DOI 10.4064/cm122-1-6
- Mouhamed Moustapha Fall and Roberta Musina, Sharp nonexistence results for a linear elliptic inequality involving Hardy and Leray potentials, J. Inequal. Appl. , posted on (2011), Art. ID 917201, 21. MR 2781430, DOI 10.1155/2011/917201
- Mouhamed Moustapha Fall, Semilinear elliptic equations for the fractional Laplacian with Hardy potential, Nonlinear Anal. 193 (2020), 111311, 29. MR 4062961, DOI 10.1016/j.na.2018.07.008
- Mouhamed Moustapha Fall and Tobias Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal. 263 (2012), no. 8, 2205–2227. MR 2964681, DOI 10.1016/j.jfa.2012.06.018
- Veronica Felli and Alberto Ferrero, On semilinear elliptic equations with borderline Hardy potentials, J. Anal. Math. 123 (2014), 303–340. MR 3233583, DOI 10.1007/s11854-014-0022-9
- Rupert L. Frank, Elliott H. Lieb, and Robert Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc. 21 (2008), no. 4, 925–950. MR 2425175, DOI 10.1090/S0894-0347-07-00582-6
- I. M. Gel′fand and G. E. Shilov, Generalized functions. Vol. 2. Spaces of fundamental and generalized functions, Academic Press, New York-London, 1968. Translated from the Russian by Morris D. Friedman, Amiel Feinstein and Christian P. Peltzer. MR 0230128
- Nassif Ghoussoub, Frédéric Robert, Shaya Shakerian, and Mingfeng Zhao, Mass and asymptotics associated to fractional Hardy-Schrödinger operators in critical regimes, Comm. Partial Differential Equations 43 (2018), no. 6, 859–892. MR 3909028, DOI 10.1080/03605302.2018.1476528
- David Gómez-Castro and Juan Luis Vázquez, The fractional Schrödinger equation with singular potential and measure data, Discrete Contin. Dyn. Syst. 39 (2019), no. 12, 7113–7139. MR 4026184, DOI 10.3934/dcds.2019298
- Xavier Ros-Oton and Joaquim Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl. (9) 101 (2014), no. 3, 275–302 (English, with English and French summaries). MR 3168912, DOI 10.1016/j.matpur.2013.06.003
- Xavier Ros-Oton and Joaquim Serra, The extremal solution for the fractional Laplacian, Calc. Var. Partial Differential Equations 50 (2014), no. 3-4, 723–750. MR 3216831, DOI 10.1007/s00526-013-0653-1
- Luis Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (2007), no. 1, 67–112. MR 2270163, DOI 10.1002/cpa.20153
- Juan Luis Vázquez, Nonlinear diffusion with fractional Laplacian operators, Nonlinear partial differential equations, Abel Symp., vol. 7, Springer, Heidelberg, 2012, pp. 271–298. MR 3289370, DOI 10.1007/978-3-642-25361-4_{1}5
- Ying Wang, Existence and nonexistence of solutions to elliptic equations involving the Hardy potential, J. Math. Anal. Appl. 456 (2017), no. 1, 274–292. MR 3680968, DOI 10.1016/j.jmaa.2017.07.002
- Laurent Véron, Elliptic equations involving measures, Stationary partial differential equations. Vol. I, Handb. Differ. Equ., North-Holland, Amsterdam, 2004, pp. 593–712. MR 2103694, DOI 10.1016/S1874-5733(04)80010-X
- D. Yafaev, Sharp constants in the Hardy-Rellich inequalities, J. Funct. Anal. 168 (1999), no. 1, 121–144. MR 1717839, DOI 10.1006/jfan.1999.3462
Additional Information
- Huyuan Chen
- Affiliation: Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, People’s Republic of China
- ORCID: 0000-0001-9269-6954
- Email: chenhuyuan@yeah.net
- Tobias Weth
- Affiliation: Goethe-Universität Frankfurt, Institut für Mathematik, Robert-Mayer-Str. 10, D-60629 Frankfurt, Germany
- MR Author ID: 698802
- Email: weth@math.uni-frankurt.de
- Received by editor(s): September 28, 2020
- Published electronically: July 15, 2021
- Additional Notes: The first author was supported by NNSF of China, No: 12071189 and 12001252, by the Jiangxi Provincial Natural Science Foundation, No: 20202BAB201005, 20202ACBL201001 and by the Alexander von Humboldt Foundation
The second author was supported by DAAD and BMBF (Germany) within the project 57385104 - © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 6881-6925
- MSC (2020): Primary 35R11, 35J75, 35B40
- DOI: https://doi.org/10.1090/tran/8443
- MathSciNet review: 4315592