Conical tessellations associated with Weyl chambers
HTML articles powered by AMS MathViewer
- by Thomas Godland and Zakhar Kabluchko PDF
- Trans. Amer. Math. Soc. 374 (2021), 7161-7196 Request permission
Abstract:
We consider $d$-dimensional random vectors $Y_1,\ldots ,Y_n$ that satisfy a mild general position assumption a.s. The hyperplanes \begin{align*} (Y_i-Y_j)^\perp \;\; (1\le i<j\le n) \end{align*} generate a conical tessellation of the Euclidean $d$-space which is closely related to the Weyl chambers of type $A_{n-1}$. We determine the number of cones in this tessellation and show that it is a.s. constant. For a random cone chosen uniformly at random from this random tessellation, we compute expectations of several geometric functionals. These include the face numbers, as well as the conic intrinsic volumes and the conical quermassintegrals. Under the additional assumption of exchangeability on $Y_1,\ldots ,Y_n$, the same is done for the dual random cones which have the same distribution as the positive hull of $Y_1-Y_2,\ldots , Y_{n-1}-Y_n$ conditioned on the event that this positive hull is not equal to $\mathbb R^d$. All these expectations turn out to be distribution-free.
Similarly, we consider the conical tessellation induced by the hyperplanes \begin{align*} (Y_i+Y_j)^\perp \;\; (1 \le i<j\le n),\quad (Y_i-Y_j)^\perp \;\; (1\le i<j\le n),\quad Y_i^\perp \;\; (1\le i\le n). \end{align*} This tessellation is closely related to the Weyl chambers of type $B_n$. We compute the number of cones in this tessellation and the expectations of various geometric functionals for random cones drawn from this random tessellation.
The main ingredient in the proofs is a connection between the number of faces of the tessellation and the number of faces of the Weyl chambers of the corresponding type that are intersected non-trivially by a certain linear subspace in general position.
References
- Dennis Amelunxen and Martin Lotz, Intrinsic volumes of polyhedral cones: a combinatorial perspective, Discrete Comput. Geom. 58 (2017), no. 2, 371–409. MR 3679941, DOI 10.1007/s00454-017-9904-9
- Dennis Amelunxen, Martin Lotz, Michael B. McCoy, and Joel A. Tropp, Living on the edge: phase transitions in convex programs with random data, Inf. Inference 3 (2014), no. 3, 224–294. MR 3311453, DOI 10.1093/imaiai/iau005
- E. Arbeiter and M. Zähle, Geometric measures for random mosaics in spherical spaces, Stochastics Stochastics Rep. 46 (1994), no. 1-2, 63–77. MR 1787167, DOI 10.1080/17442509408833870
- Eli Bagno, Riccardo Biagioli, and David Garber, Some identities involving second kind Stirling numbers of types $B$ and $D$, Electron. J. Combin. 26 (2019), no. 3, Paper No. 3.9, 20. MR 3982318, DOI 10.37236/8703
- E. Bagno and D. Garber, Signed partitions - a balls into urns approach, Preprint, arXiv:1903.02877, 2019.
- P. Bala, A $3$-parameter family of generalized Stirling numbers, 2015, Preprint, https://oeis.org/A143395/a143395.pdf.
- Imre Bárány, Daniel Hug, Matthias Reitzner, and Rolf Schneider, Random points in halfspheres, Random Structures Algorithms 50 (2017), no. 1, 3–22. MR 3583024, DOI 10.1002/rsa.20644
- Thomas M. Cover and Bradley Efron, Geometrical probability and random points on a hypersphere, Ann. Math. Statist. 38 (1967), 213–220. MR 205294, DOI 10.1214/aoms/1177699073
- T. A. Dowling, A class of geometric lattices based on finite groups, J. Combinatorial Theory Ser. B 14 (1973), 61–86. MR 307951, DOI 10.1016/s0095-8956(73)80007-3
- Mathias Drton and Caroline J. Klivans, A geometric interpretation of the characteristic polynomial of reflection arrangements, Proc. Amer. Math. Soc. 138 (2010), no. 8, 2873–2887. MR 2644900, DOI 10.1090/S0002-9939-10-10369-4
- N. Henze, Weitere Überraschungen im Zusammenhang mit dem Schnur-Orakel, Stochastik in der Schule, 33 (2013), no. 3, 18–23.
- Daniel Hug and Rolf Schneider, Random conical tessellations, Discrete Comput. Geom. 56 (2016), no. 2, 395–426. MR 3530973, DOI 10.1007/s00454-016-9788-0
- Daniel Hug and Christoph Thäle, Splitting tessellations in spherical spaces, Electron. J. Probab. 24 (2019), Paper No. 24, 60. MR 3933203, DOI 10.1214/19-EJP267
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- Zakhar Kabluchko, Alexander Marynych, Daniel Temesvari, and Christoph Thäle, Cones generated by random points on half-spheres and convex hulls of Poisson point processes, Probab. Theory Related Fields 175 (2019), no. 3-4, 1021–1061. MR 4026612, DOI 10.1007/s00440-019-00907-3
- Z. Kabluchko, D. Temesvari, and C. Thäle, A new approach to weak convergence of random cones and polytopes, Preprint, arXiv:2003.04001, 2020.
- Z. Kabluchko and C. Thäle, The typical cell of a Voronoi tessellation on the sphere, Preprint, arXiv:1911.07221, 2019.
- Zakhar Kabluchko, Vladislav Vysotsky, and Dmitry Zaporozhets, Convex hulls of random walks: expected number of faces and face probabilities, Adv. Math. 320 (2017), 595–629. MR 3709116, DOI 10.1016/j.aim.2017.09.002
- Zakhar Kabluchko, Vladislav Vysotsky, and Dmitry Zaporozhets, Convex hulls of random walks, hyperplane arrangements, and Weyl chambers, Geom. Funct. Anal. 27 (2017), no. 4, 880–918. MR 3678504, DOI 10.1007/s00039-017-0415-x
- Zakhar Kabluchko, Vladislav Vysotsky, and Dmitry Zaporozhets, A multidimensional analogue of the arcsine law for the number of positive terms in a random walk, Bernoulli 25 (2019), no. 1, 521–548. MR 3892328, DOI 10.3150/17-bej996
- W. Lang, On sums of powers of arithmetic progressions, and generalized Stirling, Eulerian and Bernoulli numbers, Preprint, arXiv:1707.04451, 2017.
- R. E. Miles, Random points, sets and tessellations on the surface of a sphere, Sankhyā Ser. A 33 (1971), 145–174. MR 321150
- Ludwig Schläfli, Gesammelte mathematische Abhandlungen. Band I, Verlag Birkhäuser, Basel, 1950 (German). MR 0034587, DOI 10.1007/978-3-0348-4118-4
- R. Schneider, Intersection probabilities and kinematic formulas for polyhedral cones, Acta Math. Hungar. 155 (2018), no. 1, 3–24. MR 3813622, DOI 10.1007/s10474-018-0810-2
- Rolf Schneider and Wolfgang Weil, Stochastic and integral geometry, Probability and its Applications (New York), Springer-Verlag, Berlin, 2008. MR 2455326, DOI 10.1007/978-3-540-78859-1
- N. J. A. Sloane (editor). The On-Line Encyclopedia of Integer Sequences. https://oeis.org.
- Ruedi Suter, Two analogues of a classical sequence, J. Integer Seq. 3 (2000), no. 1, Article 00.1.8, 1 HTML document. MR 1750742
- Vladislav Vysotsky and Dmitry Zaporozhets, Convex hulls of multidimensional random walks, Trans. Amer. Math. Soc. 370 (2018), no. 11, 7985–8012. MR 3852455, DOI 10.1090/tran/7253
- J. G. Wendel, A problem in geometric probability, Math. Scand. 11 (1962), 109–111. MR 146858, DOI 10.7146/math.scand.a-10655
- Günter M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995. MR 1311028, DOI 10.1007/978-1-4613-8431-1
Additional Information
- Thomas Godland
- Affiliation: Institut für Mathematische Stochastik, Westfälische Wilhelms-Universität Münster, Orléans-Ring 10, 48149 Münster, Germany
- ORCID: 0000-0003-4202-7968
- Email: t_godl01@uni-muenster.de
- Zakhar Kabluchko
- Affiliation: Institut für Mathematische Stochastik, Westfälische Wilhelms-Universität Münster, Orléans-Ring 10, 48149 Münster, Germany
- MR Author ID: 696619
- ORCID: 0000-0001-8483-3373
- Email: zakhar.kabluchko@uni-muenster.de
- Received by editor(s): April 22, 2020
- Received by editor(s) in revised form: February 26, 2021
- Published electronically: July 15, 2021
- Additional Notes: Supported by the German Research Foundation under Germany’s Excellence Strategy EXC 2044 – 390685587, Mathematics Münster: Dynamics - Geometry - Structure and by the DFG priority program SPP 2265 Random Geometric Systems
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 7161-7196
- MSC (2020): Primary 52A22, 60D05; Secondary 52A55, 51F15
- DOI: https://doi.org/10.1090/tran/8445
- MathSciNet review: 4315601