Global regularity of weak solutions to the generalized Leray equations and its applications
HTML articles powered by AMS MathViewer
- by Baishun Lai, Changxing Miao and Xiaoxin Zheng PDF
- Trans. Amer. Math. Soc. 374 (2021), 7449-7497 Request permission
Abstract:
We investigate a regularity for weak solutions of the following generalized Leray equations \begin{equation*} (-\Delta )^{\alpha }V- \frac {2\alpha -1}{2\alpha }V+V\cdot \nabla V-\frac {1}{2\alpha }x\cdot \nabla V+\nabla P=0, \end{equation*} which arises from the study of self-similar solutions to the generalized Navier-Stokes equations in $\mathbb R^3$. Firstly, by making use of the vanishing viscosity and developing non-local effects of the fractional diffusion operator, we prove uniform estimates for weak solutions $V$ in the weighted Hilbert space $H^\alpha _{\omega }(\mathbb {R}^3)$. Via the differences characterization of Besov spaces and the bootstrap argument, we improve the regularity for weak solution from $H^\alpha _{\omega }(\mathbb {R}^3)$ to $H_{\omega }^{1+\alpha }(\mathbb {R}^3)$. This regularity result, together with linear theory for the non-local Stokes system, leads to pointwise estimates of $V$ which allow us to obtain a natural pointwise property of the self-similar solution constructed by Lai, Miao, and Zheng [Adv. Math. 352 (2019), pp. 981–1043]. In particular, we obtain an optimal decay estimate of the self-similar solution to the classical Navier-Stokes equations by means of the special structure of Oseen tensor. This answers the question proposed by Tsai Comm. Math. Phys., 328 (2014), pp. 29–44.References
- Hajer Bahouri, Jean-Yves Chemin, and Raphaël Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343, Springer, Heidelberg, 2011. MR 2768550, DOI 10.1007/978-3-642-16830-7
- Lorenzo Brandolese and François Vigneron, New asymptotic profiles of nonstationary solutions of the Navier-Stokes system, J. Math. Pures Appl. (9) 88 (2007), no. 1, 64–86 (English, with English and French summaries). MR 2334773, DOI 10.1016/j.matpur.2007.04.007
- Lorenzo Brandolese, Fine properties of self-similar solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal. 192 (2009), no. 3, 375–401. MR 2505358, DOI 10.1007/s00205-008-0149-x
- M. Cannone, Y. Meyer, and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes, Séminaire sur les Équations aux Dérivées Partielles, 1993–1994, École Polytech., Palaiseau, 1994, pp. Exp. No. VIII, 12 (French). MR 1300903, DOI 10.1108/09533239410052824
- M. Cannone and F. Planchon, Self-similar solutions for Navier-Stokes equations in $\textbf {R}^3$, Comm. Partial Differential Equations 21 (1996), no. 1-2, 179–193. MR 1373769, DOI 10.1080/03605309608821179
- Xiangdi Cao, Qionglei Chen, and Baishun Lai, Properties of the linear non-local Stokes operator and its application, Nonlinearity 32 (2019), no. 7, 2633–2666. MR 3963887, DOI 10.1088/1361-6544/ab0b30
- Maria Colombo, Camillo De Lellis, and Luigi De Rosa, Ill-posedness of Leray solutions for the hypodissipative Navier-Stokes equations, Comm. Math. Phys. 362 (2018), no. 2, 659–688. MR 3843425, DOI 10.1007/s00220-018-3177-x
- Maria Colombo, Camillo de Lellis, and Annalisa Massaccesi, The generalized Caffarelli-Kohn-Nirenberg theorem for the hyperdissipative Navier-Stokes system, Comm. Pure Appl. Math. 73 (2020), no. 3, 609–663. MR 4057903, DOI 10.1002/cpa.21865
- Peter Constantin and Gautam Iyer, A stochastic Lagrangian representation of the three-dimensional incompressible Navier-Stokes equations, Comm. Pure Appl. Math. 61 (2008), no. 3, 330–345. MR 2376844, DOI 10.1002/cpa.20192
- Camillo De Lellis and László Székelyhidi Jr., Dissipative continuous Euler flows, Invent. Math. 193 (2013), no. 2, 377–407. MR 3090182, DOI 10.1007/s00222-012-0429-9
- Sandrine Dubois, What is a solution to the Navier-Stokes equations?, C. R. Math. Acad. Sci. Paris 335 (2002), no. 1, 27–32 (English, with English and French summaries). MR 1920429, DOI 10.1016/S1631-073X(02)02419-6
- Pedro Gabriel Fernández-Dalgo and Pierre Gilles Lemarié-Rieusset, Weak solutions for Navier-Stokes equations with initial data in weighted $L^2$ spaces, Arch. Ration. Mech. Anal. 237 (2020), no. 1, 347–382. MR 4090469, DOI 10.1007/s00205-020-01510-w
- U. Frisch, M. Lesieur, and A. Brissaud, Markovian random coupling model for turbulence, J. Fluid Mech. 65 (1974), 145–152.
- Hao Jia and Vladimír Šverák, Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions, Invent. Math. 196 (2014), no. 1, 233–265. MR 3179576, DOI 10.1007/s00222-013-0468-x
- N. H. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation, Geom. Funct. Anal. 12 (2002), no. 2, 355–379. MR 1911664, DOI 10.1007/s00039-002-8250-z
- Herbert Koch and Daniel Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math. 157 (2001), no. 1, 22–35. MR 1808843, DOI 10.1006/aima.2000.1937
- Mikhail Korobkov and Tai-Peng Tsai, Forward self-similar solutions of the Navier-Stokes equations in the half space, Anal. PDE 9 (2016), no. 8, 1811–1827. MR 3599519, DOI 10.2140/apde.2016.9.1811
- Baishun Lai, Changxing Miao, and Xiaoxin Zheng, Forward self-similar solutions of the fractional Navier-Stokes equations, Adv. Math. 352 (2019), 981–1043. MR 3975031, DOI 10.1016/j.aim.2019.06.021
- Jean Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. 63 (1934), no. 1, 193–248 (French). MR 1555394, DOI 10.1007/BF02547354
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969 (French). MR 0259693
- J. C. Mattingly and Ya. G. Sinai, An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equations, Commun. Contemp. Math. 1 (1999), no. 4, 497–516. MR 1719695, DOI 10.1142/S0219199799000183
- J. M. Mercado, E. P. Guido, A. J. Sánchez-Sesma, M.Íñiguez, and A. González, et al., Analysis of the Blasius formula and the Navier-Stokes fractional equation, In: Klapp, J. (ed.), Fluid Dynamics in Physics, Engineering and Environmental Applications, Environmental Science and Engineering, Springer, Berlin, Heidelberg, 2013, pp. 475–480.
- C. Miao, Lecture on modern harmonic analysis and applications, Monographs on Modern Pure Mathematics, no. 63, Higher Education Press, Beijing, 2018.
- Changxing Miao, Baoquan Yuan, and Bo Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations, Nonlinear Anal. 68 (2008), no. 3, 461–484. MR 2372358, DOI 10.1016/j.na.2006.11.011
- J. Nečas, M. Růžička, and V. Šverák, On Leray’s self-similar solutions of the Navier-Stokes equations, Acta Math. 176 (1996), no. 2, 283–294. MR 1397564, DOI 10.1007/BF02551584
- Luigi De Rosa, Infinitely many Leray-Hopf solutions for the fractional Navier-Stokes equations, Comm. Partial Differential Equations 44 (2019), no. 4, 335–365. MR 3941228, DOI 10.1080/03605302.2018.1547745
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Lan Tang and Yong Yu, Partial regularity of suitable weak solutions to the fractional Navier-Stokes equations, Comm. Math. Phys. 334 (2015), no. 3, 1455–1482. MR 3312440, DOI 10.1007/s00220-014-2149-z
- Tai-Peng Tsai, On Leray’s self-similar solutions of the Navier-Stokes equations satisfying local energy estimates, Arch. Rational Mech. Anal. 143 (1998), no. 1, 29–51. MR 1643650, DOI 10.1007/s002050050099
- Tai-Peng Tsai, Forward discretely self-similar solutions of the Navier-Stokes equations, Comm. Math. Phys. 328 (2014), no. 1, 29–44. MR 3196979, DOI 10.1007/s00220-014-1984-2
- Xicheng Zhang, Stochastic Lagrangian particle approach to fractal Navier-Stokes equations, Comm. Math. Phys. 311 (2012), no. 1, 133–155. MR 2892466, DOI 10.1007/s00220-012-1414-2
Additional Information
- Baishun Lai
- Affiliation: LCSM (MOE) and School of Mathematics and Statistics, Hunan Normal University, Changsha 410081, Hunan, People’s Republic of China
- Email: laibaishun@hunnu.edu.cn
- Changxing Miao
- Affiliation: Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, People’s Republic of China
- Email: miao_changxing@iapcm.ac.cn
- Xiaoxin Zheng
- Affiliation: School of Mathematics and Systems Science, Beihang University, Beijing 100191, People’s Republic of China; and Key Laboratory of Mathematics Informatics Behavioral Semantics, Ministry of Education, Beijing 100191, People’s Republic of China
- Email: xiaoxinzheng@buaa.edu.cn
- Received by editor(s): October 1, 2020
- Received by editor(s) in revised form: April 8, 2021
- Published electronically: July 27, 2021
- Additional Notes: This work was supported in part by the National Key research and development program of China (No. 2020YFAO712903) and NNSF of China under grant No. 11871087, No. 11971148, No. 12071043, and No. 11831004
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 7449-7497
- MSC (2020): Primary 35Q30, 35B40, 76D05
- DOI: https://doi.org/10.1090/tran/8455
- MathSciNet review: 4315609