Vertex operator superalgebras and the 16-fold way
HTML articles powered by AMS MathViewer
- by Chongying Dong, Siu-Hung Ng and Li Ren PDF
- Trans. Amer. Math. Soc. 374 (2021), 7779-7810 Request permission
Abstract:
Let $V$ be a vertex operator superalgebra with the natural order 2 automorphism $\sigma$. Under suitable conditions on $V$, the $\sigma$-fixed subspace $V_{\bar 0}$ is a vertex operator algebra and the $V_{\bar 0}$-module category $\mathcal {C}_{V_{\bar 0}}$ is a modular tensor category. In this paper, we prove that $\mathcal {C}_{V_{\bar 0}}$ is a fermionic modular tensor category and the Müger centralizer $\mathcal {C}_{V_{\bar 0}}^0$ of the fermion in $\mathcal {C}_{V_{\bar 0}}$ is generated by the irreducible $V_{\bar 0}$-submodules of the $V$-modules. In particular, $\mathcal {C}_{V_{\bar 0}}^0$ is a super-modular tensor category and $\mathcal {C}_{V_{\bar 0}}$ is a minimal modular extension of $\mathcal {C}_{V_{\bar 0}}^0$. We provide a construction of a vertex operator superalgebra $V^l$ for each positive integer $l$ such that $\mathcal {C}_{{(V^l)_{\bar 0}}}$ is a minimal modular extension of $\mathcal {C}_{V_{\bar 0}}^0$. We prove that these modular tensor categories $\mathcal {C}_{{(V^l)_{\bar 0}}}$ are uniquely determined, up to equivalence, by the congruence class of $l$ modulo 16.References
- Toshiyuki Abe, Geoffrey Buhl, and Chongying Dong, Rationality, regularity, and $C_2$-cofiniteness, Trans. Amer. Math. Soc. 356 (2004), no. 8, 3391–3402. MR 2052955, DOI 10.1090/S0002-9947-03-03413-5
- Chunrui Ai, Chongying Dong, Xiangyu Jiao, and Li Ren, The irreducible modules and fusion rules for the parafermion vertex operator algebras, Trans. Amer. Math. Soc. 370 (2018), no. 8, 5963–5981. MR 3812115, DOI 10.1090/tran/7302
- Katrina Barron, Chongying Dong, and Geoffrey Mason, Twisted sectors for tensor product vertex operator algebras associated to permutation groups, Comm. Math. Phys. 227 (2002), no. 2, 349–384. MR 1903649, DOI 10.1007/s002200200633
- Paul Bruillard, César Galindo, Tobias Hagge, Siu-Hung Ng, Julia Yael Plavnik, Eric C. Rowell, and Zhenghan Wang, Fermionic modular categories and the 16-fold way, J. Math. Phys. 58 (2017), no. 4, 041704, 31. MR 3641612, DOI 10.1063/1.4982048
- Paul Bruillard, César Galindo, Siu-Hung Ng, Julia Y. Plavnik, Eric C. Rowell, and Zhenghan Wang, Classification of super-modular categories by rank, Algebr. Represent. Theory 23 (2020), no. 3, 795–809. MR 4109138, DOI 10.1007/s10468-019-09873-9
- S. Carnahan and M. Miyamoto, Regularity of fixed-point vertex operator subalgebras, arXiv:1603.05645, 2018.
- Thomas Creutzig, Shashank Kanade, and Andrew R. Linshaw, Simple current extensions beyond semi-simplicity, Commun. Contemp. Math. 22 (2020), no. 1, 1950001, 49. MR 4064909, DOI 10.1142/S0219199719500019
- T. Creutzig, S. Kanade and R. McRae, Tensor categories for vertex operator superalgebra extensions, arXiv:1705.05017, 2021.
- S. B. Conlon, Twisted group algebras and their representations, J. Austral. Math. Soc. 4 (1964), 152–173. MR 0168663, DOI 10.1017/S1446788700023363
- Alexei Davydov, Michael Müger, Dmitri Nikshych, and Victor Ostrik, The Witt group of non-degenerate braided fusion categories, J. Reine Angew. Math. 677 (2013), 135–177. MR 3039775, DOI 10.1515/crelle.2012.014
- P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111–195 (French). MR 1106898
- R. Dijkgraaf, V. Pasquier, and P. Roche, Quasi Hopf algebras, group cohomology and orbifold models, Nuclear Phys. B Proc. Suppl. 18B (1990), 60–72 (1991). Recent advances in field theory (Annecy-le-Vieux, 1990). MR 1128130, DOI 10.1016/0920-5632(91)90123-V
- Chongying Dong, Vertex algebras associated with even lattices, J. Algebra 161 (1993), no. 1, 245–265. MR 1245855, DOI 10.1006/jabr.1993.1217
- Chongying Dong, Twisted modules for vertex algebras associated with even lattices, J. Algebra 165 (1994), no. 1, 91–112. MR 1272580, DOI 10.1006/jabr.1994.1099
- Chongying Dong and Jianzhi Han, On rationality of vertex operator superalgebras, Int. Math. Res. Not. IMRN 16 (2014), 4379–4399. MR 3250038, DOI 10.1093/imrn/rnt077
- Chongying Dong, Xiangyu Jiao, and Feng Xu, Quantum dimensions and quantum Galois theory, Trans. Amer. Math. Soc. 365 (2013), no. 12, 6441–6469. MR 3105758, DOI 10.1090/S0002-9947-2013-05863-1
- Chongying Dong and James Lepowsky, Generalized vertex algebras and relative vertex operators, Progress in Mathematics, vol. 112, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1233387, DOI 10.1007/978-1-4612-0353-7
- Chongying Dong and James Lepowsky, The algebraic structure of relative twisted vertex operators, J. Pure Appl. Algebra 110 (1996), no. 3, 259–295. MR 1393116, DOI 10.1016/0022-4049(95)00095-X
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Simple currents and extensions of vertex operator algebras, Comm. Math. Phys. 180 (1996), no. 3, 671–707. MR 1408523, DOI 10.1007/BF02099628
- C. Dong, H. Li and G. Mason, Compact automorphism groups of vertex operator algebras, Int. Math. Res. Not. 18 (1996), 913–921.
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Regularity of rational vertex operator algebras, Adv. Math. 132 (1997), no. 1, 148–166. MR 1488241, DOI 10.1006/aima.1997.1681
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Twisted representations of vertex operator algebras, Math. Ann. 310 (1998), no. 3, 571–600. MR 1615132, DOI 10.1007/s002080050161
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Vertex operator algebras and associative algebras, J. Algebra 206 (1998), no. 1, 67–96. MR 1637252, DOI 10.1006/jabr.1998.7425
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Twisted representations of vertex operator algebras and associative algebras, Internat. Math. Res. Notices 8 (1998), 389–397. MR 1628239, DOI 10.1155/S1073792898000269
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys. 214 (2000), no. 1, 1–56. MR 1794264, DOI 10.1007/s002200000242
- Chongying Dong, Xingjun Lin, and Siu-Hung Ng, Congruence property in conformal field theory, Algebra Number Theory 9 (2015), no. 9, 2121–2166. MR 3435813, DOI 10.2140/ant.2015.9.2121
- Chongying Dong and Geoffrey Mason, On quantum Galois theory, Duke Math. J. 86 (1997), no. 2, 305–321. MR 1430435, DOI 10.1215/S0012-7094-97-08609-9
- Chongying Dong, Geoffrey Mason, and Yongchang Zhu, Discrete series of the Virasoro algebra and the moonshine module, Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991) Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 295–316. MR 1278737
- C. Dong, S.-H. Ng and L. Ren, Orbifolds and minimal modular extensions, preprint.
- Chongying Dong, Li Ren, and Feng Xu, On orbifold theory, Adv. Math. 321 (2017), 1–30. MR 3715704, DOI 10.1016/j.aim.2017.09.032
- Chongying Dong and Gaywalee Yamskulna, Vertex operator algebras, generalized doubles and dual pairs, Math. Z. 241 (2002), no. 2, 397–423. MR 1935493, DOI 10.1007/s002090200421
- Chongying Dong and Nina Yu, $\Bbb {Z}$-graded weak modules and regularity, Comm. Math. Phys. 316 (2012), no. 1, 269–277. MR 2989460, DOI 10.1007/s00220-012-1543-7
- Chongying Dong and Zhongping Zhao, Modularity in orbifold theory for vertex operator superalgebras, Comm. Math. Phys. 260 (2005), no. 1, 227–256. MR 2175996, DOI 10.1007/s00220-005-1418-2
- Chongying Dong and Zhongping Zhao, Twisted representations of vertex operator superalgebras, Commun. Contemp. Math. 8 (2006), no. 1, 101–121. MR 2208812, DOI 10.1142/S0219199706002040
- Sergio Doplicher and John E. Roberts, A new duality theory for compact groups, Invent. Math. 98 (1989), no. 1, 157–218. MR 1010160, DOI 10.1007/BF01388849
- Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581–642. MR 2183279, DOI 10.4007/annals.2005.162.581
- Alex J. Feingold, Igor B. Frenkel, and John F. X. Ries, Spinor construction of vertex operator algebras, triality, and $E^{(1)}_8$, Contemporary Mathematics, vol. 121, American Mathematical Society, Providence, RI, 1991. MR 1123265, DOI 10.1090/conm/121
- Igor B. Frenkel, Yi-Zhi Huang, and James Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), no. 494, viii+64. MR 1142494, DOI 10.1090/memo/0494
- I. B. Frenkel, J. Lepowsky, and A. Meurman, Vertex operator calculus, Mathematical aspects of string theory (San Diego, Calif., 1986) Adv. Ser. Math. Phys., vol. 1, World Sci. Publishing, Singapore, 1987, pp. 150–188. MR 915822
- Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR 996026
- Jianzhi Han and Chunrui Ai, Three equivalent rationalities of vertex operator superalgebras, J. Math. Phys. 56 (2015), no. 11, 111701, 7. MR 3421054, DOI 10.1063/1.4935164
- Akihide Hanaki, Masahiko Miyamoto, and Daisuke Tambara, Quantum Galois theory for finite groups, Duke Math. J. 97 (1999), no. 3, 541–544. MR 1682988, DOI 10.1215/S0012-7094-99-09720-X
- Yi-Zhi Huang, Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math. 10 (2008), no. suppl. 1, 871–911. MR 2468370, DOI 10.1142/S0219199708003083
- Yi-Zhi Huang, Vertex operator algebras and the Verlinde conjecture, Commun. Contemp. Math. 10 (2008), no. 1, 103–154. MR 2387861, DOI 10.1142/S0219199708002727
- Yi-Zhi Huang, Alexander Kirillov Jr., and James Lepowsky, Braided tensor categories and extensions of vertex operator algebras, Comm. Math. Phys. 337 (2015), no. 3, 1143–1159. MR 3339173, DOI 10.1007/s00220-015-2292-1
- Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra. I, II, Selecta Math. (N.S.) 1 (1995), no. 4, 699–756, 757–786. MR 1383584, DOI 10.1007/BF01587908
- Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra. I, II, Selecta Math. (N.S.) 1 (1995), no. 4, 699–756, 757–786. MR 1383584, DOI 10.1007/BF01587908
- Yi-Zhi Huang and James Lepowsky, A theory of tensor products for module categories for a vertex operator algebra. III, J. Pure Appl. Algebra 100 (1995), no. 1-3, 141–171. MR 1344848, DOI 10.1016/0022-4049(95)00049-3
- Victor Kac and Weiqiang Wang, Vertex operator superalgebras and their representations, Mathematical aspects of conformal and topological field theories and quantum groups (South Hadley, MA, 1992) Contemp. Math., vol. 175, Amer. Math. Soc., Providence, RI, 1994, pp. 161–191. MR 1302018, DOI 10.1090/conm/175/01843
- Alexander Kleshchev, Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, vol. 163, Cambridge University Press, Cambridge, 2005. MR 2165457, DOI 10.1017/CBO9780511542800
- Alexei Kitaev, Anyons in an exactly solved model and beyond, Ann. Physics 321 (2006), no. 1, 2–111. MR 2200691, DOI 10.1016/j.aop.2005.10.005
- Alexander Kirillov Jr. and Viktor Ostrik, On a $q$-analogue of the McKay correspondence and the ADE classification of $\mathfrak {sl}_2$ conformal field theories, Adv. Math. 171 (2002), no. 2, 183–227. MR 1936496, DOI 10.1006/aima.2002.2072
- Tian Lan, Liang Kong, and Xiao-Gang Wen, Modular extensions of unitary braided fusion categories and $2+1\textrm {D}$ topological/SPT orders with symmetries, Comm. Math. Phys. 351 (2017), no. 2, 709–739. MR 3613518, DOI 10.1007/s00220-016-2748-y
- T. Lan, L. Kong, X.-G. Wen, Classification of (2+1)-dimensional topological order and symmetry-protected topological order for bosonic and fermionic systems with on-site symmetries, Phys. Rev. B 95 (2017), 235140.
- Hai-Sheng Li, Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Algebra 109 (1996), no. 2, 143–195. MR 1387738, DOI 10.1016/0022-4049(95)00079-8
- Hai-Sheng Li, Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, Moonshine, the Monster, and related topics (South Hadley, MA, 1994) Contemp. Math., vol. 193, Amer. Math. Soc., Providence, RI, 1996, pp. 203–236. MR 1372724, DOI 10.1090/conm/193/02373
- Haisheng Li, Some finiteness properties of regular vertex operator algebras, J. Algebra 212 (1999), no. 2, 495–514. MR 1676852, DOI 10.1006/jabr.1998.7654
- Masahiko Miyamoto, $C_2$-cofiniteness of cyclic-orbifold models, Comm. Math. Phys. 335 (2015), no. 3, 1279–1286. MR 3320313, DOI 10.1007/s00220-014-2252-1
- Masahiko Miyamoto and Kenichiro Tanabe, Uniform product of $A_{g,n}(V)$ for an orbifold model $V$ and $G$-twisted Zhu algebra, J. Algebra 274 (2004), no. 1, 80–96. MR 2040864, DOI 10.1016/j.jalgebra.2003.11.017
- Michael Müger, On the structure of modular categories, Proc. London Math. Soc. (3) 87 (2003), no. 2, 291–308. MR 1990929, DOI 10.1112/S0024611503014187
- Siu-Hung Ng, Andrew Schopieray, and Yilong Wang, Higher Gauss sums of modular categories, Selecta Math. (N.S.) 25 (2019), no. 4, Paper No. 53, 32. MR 3997136, DOI 10.1007/s00029-019-0499-2
- J.-P. Serre, A course in arithmetic, Graduate Texts in Mathematics, No. 7, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French. MR 0344216, DOI 10.1007/978-1-4684-9884-4
- Kenichiro Tanabe, On intertwining operators and finite automorphism groups of vertex operator algebras, J. Algebra 287 (2005), no. 1, 174–198. MR 2134264, DOI 10.1016/j.jalgebra.2005.01.044
- Erik Verlinde, Fusion rules and modular transformations in $2$D conformal field theory, Nuclear Phys. B 300 (1988), no. 3, 360–376. MR 954762, DOI 10.1016/0550-3213(88)90603-7
- X. G. Wen, Topological orders in rigid states, Internat. J. Modern Phys. B 4 (1990), no. 2, 239–271. MR 1043302, DOI 10.1142/S0217979290000139
- Feng Xu, Algebraic orbifold conformal field theories, Proc. Natl. Acad. Sci. USA 97 (2000), no. 26, 14069–14073. MR 1806798, DOI 10.1073/pnas.260375597
- Xiaoping Xu, Introduction to vertex operator superalgebras and their modules, Mathematics and its Applications, vol. 456, Kluwer Academic Publishers, Dordrecht, 1998. MR 1656671, DOI 10.1007/978-94-015-9097-6
- Yongchang Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), no. 1, 237–302. MR 1317233, DOI 10.1090/S0894-0347-96-00182-8
Additional Information
- Chongying Dong
- Affiliation: Department of Mathematics, University of California, Santa Cruz, California 95064
- MR Author ID: 316207
- Siu-Hung Ng
- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
- MR Author ID: 343929
- Li Ren
- Affiliation: School of Mathematics, Sichuan University, Chengdu 610064, People’s Republic of China
- MR Author ID: 904508
- Received by editor(s): January 21, 2020
- Received by editor(s) in revised form: December 22, 2020
- Published electronically: July 19, 2021
- Additional Notes: The first author was partially supported by the Simons foundation 634104 and NSFC grant 11871351
The second author was partialy supported by NSF grants DMS1001566, DMS1303253, and DMS1501179
The third author was supported by NSFC grants 11671277, 12071314
The third author is the corresponding author - © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 7779-7810
- MSC (2020): Primary 17B69
- DOI: https://doi.org/10.1090/tran/8454
- MathSciNet review: 4328683