Asymptotics of compound means
HTML articles powered by AMS MathViewer
- by Titus Hilberdink PDF
- Trans. Amer. Math. Soc. 374 (2021), 7569-7588 Request permission
Abstract:
Given bivariate means $m$ and $M$, we can form sequences $a_n$, $b_n$ defined recursively by $a_{n+1}=m(a_n,b_n)$, $b_{n+1}=M(a_n,b_n)$ with $a_0,b_0>0$. These converge (under mild conditions) to a new mean, $\mathcal {M}(a_0,b_0)$, called a compound mean. For $m$ and $M$ homogeneous, $\mathcal {M}$ is also homogeneous and satisfies a functional equation. In this paper we study the asymptotic behaviour of $\mathcal {M}(1,x)$ as $x\to \infty$ given that of $m$ and $M$, obtaining the main term up to a possible oscillatory function. We investigate when this oscillatory behaviour is in fact present, in particular for $m$ and $M$ coming from some well-known classes of means. We also present some numerics, which indicate the presence of oscillation is generic.References
- Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1987. A study in analytic number theory and computational complexity; A Wiley-Interscience Publication. MR 877728
- P. S. Bullen, Handbook of means and their inequalities, Mathematics and its Applications, vol. 560, Kluwer Academic Publishers Group, Dordrecht, 2003. Revised from the 1988 original [P. S. Bullen, D. S. Mitrinović and P. M. Vasić, Means and their inequalities, Reidel, Dordrecht; MR0947142]. MR 2024343, DOI 10.1007/978-94-017-0399-4
- David A. Cox, The arithmetic-geometric mean of Gauss, Enseign. Math. (2) 30 (1984), no. 3-4, 275–330. MR 767905
- N. G. de Bruijn, An asymptotic problem on iterated functions, Nederl. Akad. Wetensch. Indag. Math. 41 (1979), no. 2, 105–110. MR 535559
- Edward L. Dodd, The substitutive mean and certain subclasses of this general mean, Ann. Math. Statistics 11 (1940), 163–176. MR 2060, DOI 10.1214/aoms/1177731910
- Serge Dubuc, Étude théorique et numérique de la fonction de Karlin-McGregor, J. Analyse Math. 42 (1982/83), 15–37 (French). MR 729400, DOI 10.1007/BF02786869
- Bruce Ebanks, Looking for a few good means, Amer. Math. Monthly 119 (2012), no. 8, 658–669. MR 2988228, DOI 10.4169/amer.math.monthly.119.08.658
- D. M. E. Foster and G. M. Phillips, General compound means, Approximation theory and applications (St. John’s, Nfld., 1984) Res. Notes in Math., vol. 133, Pitman, Boston, MA, 1985, pp. 56–65. MR 879128
- C. Gini, Le Medie, Unione Tipografico Torinese, Milano, 1958.
- G. H. Hardy, Orders of infinity, Cambridge Tracts in Mathematics and Mathematical Physics vol. 12, Cambridge University Press, 1910.
- G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988. Reprint of the 1952 edition. MR 944909
- Titus Hilberdink, Orders of growth of real functions, Real Anal. Exchange 32 (2007), no. 2, 359–389. MR 2369850
- Titus Hilberdink, Some connections between Bernoulli convolutions and analytic number theory, Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Part 1, Proc. Sympos. Pure Math., vol. 72, Amer. Math. Soc., Providence, RI, 2004, pp. 233–271. MR 2112108
- Samuel Karlin and James McGregor, Embedding iterates of analytic functions with two fixed points into continuous groups, Trans. Amer. Math. Soc. 132 (1968), 137–145. MR 224790, DOI 10.1090/S0002-9947-1968-0224790-2
- Hideki Kosaki, Strong monotonicity for various means, J. Funct. Anal. 267 (2014), no. 7, 1917–1958. MR 3250355, DOI 10.1016/j.jfa.2014.07.021
- Marek Kuczma, Bogdan Choczewski, and Roman Ger, Iterative functional equations, Encyclopedia of Mathematics and its Applications, vol. 32, Cambridge University Press, Cambridge, 1990. MR 1067720, DOI 10.1017/CBO9781139086639
- E. B. Leach and M. C. Sholander, Extended mean values, Amer. Math. Monthly 85 (1978), no. 2, 84–90. MR 507368, DOI 10.2307/2321783
- E. B. Leach and M. C. Sholander, Extended mean values. II, J. Math. Anal. Appl. 92 (1983), no. 1, 207–223. MR 694172, DOI 10.1016/0022-247X(83)90280-9
- Tung Po Lin, The power mean and the logarithmic mean, Amer. Math. Monthly 81 (1974), 879–883. MR 354972, DOI 10.2307/2319447
- László Losonczi, Homogeneous symmetric means of two variables, Aequationes Math. 74 (2007), no. 3, 262–281. MR 2376453, DOI 10.1007/s00010-007-2884-8
- D. H. Lehmer, On the compounding of certain means, J. Math. Anal. Appl. 36 (1971), 183–200. MR 281696, DOI 10.1016/0022-247X(71)90029-1
- M. Nagumo, Über eine Klasse der Mittelwerte, Jpn. J. Math. 7 (1930) 71–79.
- Kenneth B. Stolarsky, Generalizations of the logarithmic mean, Math. Mag. 48 (1975), 87–92. MR 357718, DOI 10.2307/2689825
- G. J. Székely, A classification of means, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 18 (1975), 129–133 (1976). MR 419705
- Elmar Teufl, On the asymptotic behaviour of analytic solutions of linear iterative functional equations, Aequationes Math. 73 (2007), no. 1-2, 18–55. MR 2311653, DOI 10.1007/s00010-006-2858-2
- Gheorghe Toader and Iulia Costin, Means in mathematical analysis, Mathematical Analysis and Its Applications, Academic Press, London, 2018. Bivariate means. MR 3702064
Additional Information
- Titus Hilberdink
- Affiliation: Department of Mathematics, University of Reading, Whiteknights, PO Box 220, Reading RG6 6AX, England
- MR Author ID: 603983
- Email: t.w.hilberdink@reading.ac.uk
- Received by editor(s): January 15, 2020
- Published electronically: August 19, 2021
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 7569-7588
- MSC (2020): Primary 26E60; Secondary 26A18, 41A60
- DOI: https://doi.org/10.1090/tran/8473
- MathSciNet review: 4328676