Plethysms of symmetric functions and highest weight representations
HTML articles powered by AMS MathViewer
- by Melanie de Boeck, Rowena Paget and Mark Wildon PDF
- Trans. Amer. Math. Soc. 374 (2021), 8013-8043 Request permission
Abstract:
Let $s_\nu \circ s_\mu$ denote the plethystic product of the Schur functions $s_\nu$ and $s_\mu$. In this article we define an explicit polynomial representation corresponding to $s_\nu \circ s_\mu$ with basis indexed by certain ‘plethystic’ semistandard tableaux. Using these representations we prove generalizations of four results on plethysms due to Bruns–Conca–Varbaro, Brion, Ikenmeyer and the authors. In particular, we give a sufficient condition for the multiplicity $\langle s_\nu \circ s_\mu , s_\lambda \rangle$ to be stable under insertion of new parts into $\mu$ and $\lambda$. We also characterize all maximal and minimal partitions $\lambda$ in the dominance order such that $s_\lambda$ appears in $s_\nu \circ s_\mu$ and determine the corresponding multiplicities using plethystic semistandard tableaux.References
- Silvana Abeasis, The $\textrm {GL}(V)$-invariant ideals in $S(S^{2}V)$, Rend. Mat. (6) 13 (1980), no. 2, 235–262 (Italian, with English summary). MR 602662
- Edward A. Bender and Donald E. Knuth, Enumeration of plane partitions, J. Combinatorial Theory Ser. A 13 (1972), 40–54. MR 299574, DOI 10.1016/0097-3165(72)90007-6
- Giandomenico Boffi, On some plethysms, Adv. Math. 89 (1991), no. 2, 107–126. MR 1128609, DOI 10.1016/0001-8708(91)90075-I
- Michel Brion, Stable properties of plethysm: on two conjectures of Foulkes, Manuscripta Math. 80 (1993), no. 4, 347–371. MR 1243152, DOI 10.1007/BF03026558
- Winfried Bruns, Aldo Conca, and Matteo Varbaro, Relations between the minors of a generic matrix, Adv. Math. 244 (2013), 171–206. MR 3077870, DOI 10.1016/j.aim.2013.05.004
- Christophe Carré and Bernard Leclerc, Splitting the square of a Schur function into its symmetric and antisymmetric parts, J. Algebraic Combin. 4 (1995), no. 3, 201–231. MR 1331743, DOI 10.1023/A:1022475927626
- Eun J. Choi, Young H. Kim, Hyoung J. Ko, and Seoung J. Won, $\textrm {GL}_n$-decomposition of the Schur complex $S_r(\bigwedge ^2\phi )$, Bull. Korean Math. Soc. 40 (2003), no. 1, 29–51. MR 1958222, DOI 10.4134/BKMS.2003.40.1.029
- Melanie de Boeck, A study of Foulkes modules using semistandard homomorphisms, arXiv:1409.0734, 2014, 10 pages.
- Suzie Dent, Incidence structure of partitions, Ph.D. thesis, UEA, 1997.
- Vlastimil Dlab and Claus Michael Ringel, The module theoretical approach to quasi-hereditary algebras, Representations of algebras and related topics (Kyoto, 1990) London Math. Soc. Lecture Note Ser., vol. 168, Cambridge Univ. Press, Cambridge, 1992, pp. 200–224. MR 1211481
- Karin Erdmann and Mark J. Wildon, Introduction to Lie algebras, Springer Undergraduate Mathematics Series, Springer-Verlag London, Ltd., London, 2006. MR 2218355, DOI 10.1007/1-84628-490-2
- H. O. Foulkes, Concomitants of the quintic and sextic up to degree four in the coefficients of the ground form, J. London Math. Soc. 25 (1950), 205–209. MR 37276, DOI 10.1112/jlms/s1-25.3.205
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- J. A. Green, Polynomial representations of $\textrm {GL}_{n}$, Second corrected and augmented edition, Lecture Notes in Mathematics, vol. 830, Springer, Berlin, 2007. With an appendix on Schensted correspondence and Littelmann paths by K. Erdmann, Green and M. Schocker. MR 2349209
- David J. Hemmer and Daniel K. Nakano, Specht filtrations for Hecke algebras of type A, J. London Math. Soc. (2) 69 (2004), no. 3, 623–638. MR 2050037, DOI 10.1112/S0024610704005186
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562
- Christian Ikenmeyer, Geometric complexity theory, tensor rank, and Littlewood–Richardson coefficients, Ph.D. thesis, Universität Paderborn, 2012.
- Gordon James and Adalbert Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR 644144
- G. D. James, The representation theory of the symmetric groups, Lecture Notes in Mathematics, vol. 682, Springer, Berlin, 1978. MR 513828
- Thomas Kahle and Mateusz Michałek, Plethysm and lattice point counting, Found. Comput. Math. 16 (2016), no. 5, 1241–1261. MR 3552845, DOI 10.1007/s10208-015-9275-7
- Nicholas A. Loehr and Jeffrey B. Remmel, A computational and combinatorial exposé of plethystic calculus, J. Algebraic Combin. 33 (2011), no. 2, 163–198. MR 2765321, DOI 10.1007/s10801-010-0238-4
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Eoghan McDowell, The image of the Specht module under the inverse Schur functor in arbitrary characteristic, arXiv:2101.057702v2, 27 pages, January 2021.
- M. J. Newell, A theorem on the plethysm of $S$-functions, Quart. J. Math. Oxford Ser. (2) 2 (1951), 161–166. MR 43762, DOI 10.1093/qmath/2.1.161
- Rowena Paget, A family of modules with Specht and dual Specht filtrations, J. Algebra 312 (2007), no. 2, 880–890. MR 2333189, DOI 10.1016/j.jalgebra.2007.03.022
- Rowena Paget and Mark Wildon, Minimal and maximal constituents of twisted Foulkes characters, J. Lond. Math. Soc. (2) 93 (2016), no. 2, 301–318. MR 3483115, DOI 10.1112/jlms/jdv070
- Rowena Paget and Mark Wildon, Generalized Foulkes modules and maximal and minimal constituents of plethysms of Schur functions, Proc. Lond. Math. Soc. (3) 118 (2019), no. 5, 1153–1187. MR 3946719, DOI 10.1112/plms.12210
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589
- Richard P. Stanley, Positivity problems and conjectures in algebraic combinatorics, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 295–319. MR 1754784
- Mark Wildon, Vertices of Specht modules and blocks of the symmetric group, J. Algebra 323 (2010), no. 8, 2243–2256. MR 2596377, DOI 10.1016/j.jalgebra.2010.01.014
Additional Information
- Melanie de Boeck
- Affiliation: School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7FS, United Kingdom
- MR Author ID: 1282991
- Email: melaniedeboeck@hotmail.com
- Rowena Paget
- Affiliation: School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7FS, United Kingdom
- MR Author ID: 760995
- Email: r.e.paget@kent.ac.uk
- Mark Wildon
- Affiliation: Department of Mathematics, Royal Holloway, University of London, Egham, TW20 0EX, United Kingdom
- MR Author ID: 727489
- Email: mark.wildon@rhul.ac.uk
- Received by editor(s): October 8, 2018
- Received by editor(s) in revised form: March 7, 2021
- Published electronically: August 23, 2021
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 8013-8043
- MSC (2020): Primary 05E05; Secondary 05E10, 17B10, 20C30, 22E47
- DOI: https://doi.org/10.1090/tran/8481
- MathSciNet review: 4328690