## Geometric structures and the Laplace spectrum, Part II

HTML articles powered by AMS MathViewer

- by Samuel Lin, Benjamin Schmidt and Craig Sutton PDF
- Trans. Amer. Math. Soc.
**374**(2021), 8483-8530 Request permission

## Abstract:

We classify the locally homogeneous Riemannian metrics on elliptic three-manifolds, which contributes to our classification of the compact homogeneous Riemannian three-manifolds. Then, we apply the former result to our continued exploration of the extent to which the spectrum encodes the local geometry of a locally homogeneous three-manifold. Specifically, using the first four heat invariants, we find that any collection of isospectral locally homogeneous metrics on an elliptic three-manifold $\Gamma \backslash S^3$ contains at most two isometry classes and these classes are necessarily locally isometric. In fact, if the elliptic three-manifold is $S^3$, $\mathbb {R}P^3$ or has non-cyclic fundamental group, then (up to isometry) its locally homogeneous Riemannian metrics can be mutually distinguished via their spectra. Currently, there is no example of an isospectral pair consisting of locally homogeneous elliptic three-manifolds with non-isometric universal cover; however, we show that if such a pair exists, then it satisfies certain restrictive geometric conditions. Finally, we note that our classification of locally homogeneous elliptic three-manifolds shows that, for $q \geq 3$, the lens space $L(q;1,1)$ admits pairs of locally isometric locally homogeneous metrics where only one of the metrics is homogeneous. While this phenomenon cannot occur in dimension two, these lens spaces account for all such examples in dimension three.## References

- Matthias Aschenbrenner, Stefan Friedl, and Henry Wilton,
*3-manifold groups*, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2015. MR**3444187**, DOI 10.4171/154 - Pierre H. Bérard,
*Spectral geometry: direct and inverse problems*, Lecture Notes in Mathematics, vol. 1207, Springer-Verlag, Berlin, 1986. With appendixes by Gérard Besson, and by Bérard and Marcel Berger. MR**861271**, DOI 10.1007/BFb0076330 - M. Berger,
*Le spectre des variétés riemanniennes*, Rev. Roumaine Math. Pures Appl.**13**(1968), 915–931 (French). MR**239535** - Nathan Brown, Rachel Finck, Matthew Spencer, Kristopher Tapp, and Zhongtao Wu,
*Invariant metrics with nonnegative curvature on compact Lie groups*, Canad. Math. Bull.**50**(2007), no. 1, 24–34. MR**2296622**, DOI 10.4153/CMB-2007-003-7 - E. J. Brody,
*The topological classification of the lens spaces*, Ann. of Math. (2)**71**(1960), 163–184. MR**116336**, DOI 10.2307/1969884 - Peter Buser,
*Isospectral Riemann surfaces*, Ann. Inst. Fourier (Grenoble)**36**(1986), no. 2, 167–192 (English, with French summary). MR**850750** - Marshall M. Cohen,
*A course in simple-homotopy theory*, Graduate Texts in Mathematics, Vol. 10, Springer-Verlag, New York-Berlin, 1973. MR**0362320** - J. E. D’Atri and W. Ziller,
*Naturally reductive metrics and Einstein metrics on compact Lie groups*, Mem. Amer. Math. Soc.**18**(1979), no. 215, iii+72. MR**519928**, DOI 10.1090/memo/0215 - Peter G. Doyle and Juan Pablo Rossetti,
*Tetra and Didi, the cosmic spectral twins*, Geom. Topol.**8**(2004), 1227–1242. MR**2087082**, DOI 10.2140/gt.2004.8.1227 - Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine,
*Riemannian geometry*, 3rd ed., Universitext, Springer-Verlag, Berlin, 2004. MR**2088027**, DOI 10.1007/978-3-642-18855-8 - Andrew Liang Li Geng,
*The classification of five-dimensional geometries*, ProQuest LLC, Ann Arbor, MI, 2016. Thesis (Ph.D.)–The University of Chicago. MR**3553586** - V. Gorbatsevich,
*Three-dimensional homogeneous spaces*, Sibirsk. Mat. Zh.**54**(1977), no. 2, 280–293. - Carolyn Gordon,
*Isospectral closed Riemannian manifolds which are not locally isometric*, J. Differential Geom.**37**(1993), no. 3, 639–649. MR**1217163** - Carolyn S. Gordon,
*Isospectral closed Riemannian manifolds which are not locally isometric. II*, Geometry of the spectrum (Seattle, WA, 1993) Contemp. Math., vol. 173, Amer. Math. Soc., Providence, RI, 1994, pp. 121–131. MR**1298201**, DOI 10.1090/conm/173/01821 - Victor Guillemin and Shlomo Sternberg,
*Symplectic techniques in physics*, Cambridge University Press, Cambridge, 1984. MR**770935** - Ku Yong Ha and Jong Bum Lee,
*The isometry groups of simply connected 3-dimensional unimodular Lie groups*, J. Geom. Phys.**62**(2012), no. 2, 189–203. MR**2864471**, DOI 10.1016/j.geomphys.2011.10.011 - Richard S. Hamilton,
*Three-manifolds with positive Ricci curvature*, J. Differential Geometry**17**(1982), no. 2, 255–306. MR**664497** - Richard S. Hamilton,
*Four-manifolds with positive curvature operator*, J. Differential Geom.**24**(1986), no. 2, 153–179. MR**862046** - Richard S. Hamilton,
*A compactness property for solutions of the Ricci flow*, Amer. J. Math.**117**(1995), no. 3, 545–572. MR**1333936**, DOI 10.2307/2375080 - Richard S. Hamilton,
*Non-singular solutions of the Ricci flow on three-manifolds*, Comm. Anal. Geom.**7**(1999), no. 4, 695–729. MR**1714939**, DOI 10.4310/CAG.1999.v7.n4.a2 - Akira Ikeda,
*On the spectrum of a Riemannian manifold of positive constant curvature*, Osaka Math. J.**17**(1980), no. 1, 75–93. MR**558320** - Akira Ikeda,
*On lens spaces which are isospectral but not isometric*, Ann. Sci. École Norm. Sup. (4)**13**(1980), no. 3, 303–315. MR**597742** - Akira Ikeda and Yoshihiko Yamamoto,
*On the spectra of $3$-dimensional lens spaces*, Osaka Math. J.**16**(1979), no. 2, 447–469. MR**539600** - Bruce Kleiner and John Lott,
*Notes on Perelman’s papers*, Geom. Topol.**12**(2008), no. 5, 2587–2855. MR**2460872**, DOI 10.2140/gt.2008.12.2587 - Federico G. Lastaria,
*Homogeneous metrics with the same curvature*, Simon Stevin**65**(1991), no. 3-4, 267–281. MR**1162498** - Emilio A. Lauret,
*The smallest Laplace eigenvalue of homogeneous 3-spheres*, Bull. Lond. Math. Soc.**51**(2019), no. 1, 49–69. MR**3919561**, DOI 10.1112/blms.12213 - S. Lin, B. Schmidt and C. Sutton,
*Geometric structures and the Laplace spectrum*, arXiv:1905.11454 [Math DG] (preprint), 2019. - J. P. Luminet, J. Weeks, A. Riazuelo, R. Lehoucq and J. P. Uzan,
*Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic micorwave background*, Nature**425**(2003), 593–595. - J. Milnor,
*A unique decomposition theorem for $3$-manifolds*, Amer. J. Math.**84**(1962), 1–7. MR**142125**, DOI 10.2307/2372800 - John Milnor,
*Curvatures of left invariant metrics on Lie groups*, Advances in Math.**21**(1976), no. 3, 293–329. MR**425012**, DOI 10.1016/S0001-8708(76)80002-3 - S. Minakshisundaram and Å. Pleijel,
*Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds*, Canad. J. Math.**1**(1949), 242–256. MR**31145**, DOI 10.4153/cjm-1949-021-5 - Takushiro Ochiai and Tsunero Takahashi,
*The group of isometries of a left invariant Riemannian metric on a Lie group*, Math. Ann.**223**(1976), no. 1, 91–96. MR**412354**, DOI 10.1007/BF01360280 - A. L. Onishchik,
*The group of isometries of a compact Riemannian homogeneous space*, Differential geometry and its applications (Eger, 1989) Colloq. Math. Soc. János Bolyai, vol. 56, North-Holland, Amsterdam, 1992, pp. 597–616. MR**1211686** - Peter Orlik,
*Seifert manifolds*, Lecture Notes in Mathematics, Vol. 291, Springer-Verlag, Berlin-New York, 1972. MR**0426001** - G. Perelman,
*The entropy formula for the Ricci flow and its geometric applications*, arXiv:math.DG/0211159, 2002. - G. Perelman,
*Ricci flow with surgery on three-manifolds*, arXiv:math.DG/0303109, 2003. - G. Perelman,
*Finite extinction time for the solutions to the Ricci flow on certain three-manifolds*, arXiv:math.DG/0307245, 2003. - Iosif Polterovich,
*Heat invariants of Riemannian manifolds*, Israel J. Math.**119**(2000), 239–252. MR**1802656**, DOI 10.1007/BF02810670 - Emily Proctor,
*Isospectral metrics and potentials on classical compact simple Lie groups*, Michigan Math. J.**53**(2005), no. 2, 305–318. MR**2152702**, DOI 10.1307/mmj/1123090770 - Alan W. Reid,
*Isospectrality and commensurability of arithmetic hyperbolic $2$- and $3$-manifolds*, Duke Math. J.**65**(1992), no. 2, 215–228. MR**1150584**, DOI 10.1215/S0012-7094-92-06508-2 - Takashi Sakai,
*On eigen-values of Laplacian and curvature of Riemannian manifold*, Tohoku Math. J. (2)**23**(1971), 589–603. MR**303465**, DOI 10.2748/tmj/1178242547 - Takashi Sakai,
*Riemannian geometry*, Translations of Mathematical Monographs, vol. 149, American Mathematical Society, Providence, RI, 1996. Translated from the 1992 Japanese original by the author. MR**1390760**, DOI 10.1090/mmono/149 - B. Schmidt and C. Sutton,
*Hearing the moments of inertia of a molecule via its rotational spectrum, II*, unpublished (2014). https://math.dartmouth.edu/ cjsutton/Sutton.2014.Moments2.pdf - Dorothee Schueth,
*Isospectral manifolds with different local geometries*, J. Reine Angew. Math.**534**(2001), 41–94. MR**1831631**, DOI 10.1515/crll.2001.035 - Benjamin Schmidt and Jon Wolfson,
*Three-manifolds with constant vector curvature*, Indiana Univ. Math. J.**63**(2014), no. 6, 1757–1783. MR**3298721**, DOI 10.1512/iumj.2014.63.5436 - Benjamin Schmidt and Jon Wolfson,
*Complete curvature homogeneous metrics on $\mathrm {SL}_2(\Bbb {R})$*, Pacific J. Math.**273**(2015), no. 2, 499–509. MR**3317777**, DOI 10.2140/pjm.2015.273.499 - Peter Scott,
*The geometries of $3$-manifolds*, Bull. London Math. Soc.**15**(1983), no. 5, 401–487. MR**705527**, DOI 10.1112/blms/15.5.401 - W. Threlfall and H. Seifert,
*Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes (Schluß)*, Math. Ann.**107**(1933), no. 1, 543–586 (German). MR**1512817**, DOI 10.1007/BF01448910 - Kouei Sekigawa,
*On some $3$-dimensional curvature homogeneous spaces*, Tensor (N.S.)**31**(1977), no. 1, 87–97. MR**464115** - V. A. Sharafutdinov,
*Local audibility of a hyperbolic metric*, Sibirsk. Mat. Zh.**50**(2009), no. 5, 1176–1194 (Russian, with Russian summary); English transl., Sib. Math. J.**50**(2009), no. 5, 929–944. MR**2603860**, DOI 10.1007/s11202-009-0103-7 - I. M. Singer,
*Infinitesimally homogeneous spaces*, Comm. Pure Appl. Math.**13**(1960), 685–697. MR**131248**, DOI 10.1002/cpa.3160130408 - Toshikazu Sunada,
*Riemannian coverings and isospectral manifolds*, Ann. of Math. (2)**121**(1985), no. 1, 169–186. MR**782558**, DOI 10.2307/1971195 - Craig J. Sutton,
*Isospectral simply-connected homogeneous spaces and the spectral rigidity of group actions*, Comment. Math. Helv.**77**(2002), no. 4, 701–717. MR**1949110**, DOI 10.1007/PL00012438 - C.J. Sutton,
*Detecting the moments of inertia of a molecule via its rotational spectrum, Part I*, unpublished (2013), https://math.dartmouth.edu/ cjsutton/Sutton.2013.Moments1.pdf. - Craig Sutton,
*On the Poisson relation for compact Lie groups*, Ann. Global Anal. Geom.**57**(2020), no. 4, 537–589. MR**4102792**, DOI 10.1007/s10455-020-09712-x - Shǔkichi Tanno,
*Eigenvalues of the Laplacian of Riemannian manifolds*, Tǒhoku Math. J. (2)**25**(1973), 391–403. MR**0334086**, DOI 10.2748/tmj/1178241341 - Shûkichi Tanno,
*A characterization of the canonical spheres by the spectrum*, Math. Z.**175**(1980), no. 3, 267–274. MR**602639**, DOI 10.1007/BF01163028 - William P. Thurston,
*Three-dimensional manifolds, Kleinian groups and hyperbolic geometry*, Bull. Amer. Math. Soc. (N.S.)**6**(1982), no. 3, 357–381. MR**648524**, DOI 10.1090/S0273-0979-1982-15003-0 - Marie-France Vignéras,
*Variétés riemanniennes isospectrales et non isométriques*, Ann. of Math. (2)**112**(1980), no. 1, 21–32 (French). MR**584073**, DOI 10.2307/1971319 - Joseph A. Wolf,
*Isospectrality for spherical space forms*, Results Math.**40**(2001), no. 1-4, 321–338. Dedicated to Shiing-Shen Chern on his 90th birthday. MR**1860378**, DOI 10.1007/BF03322715 - Joseph A. Wolf,
*Spaces of constant curvature*, 6th ed., AMS Chelsea Publishing, Providence, RI, 2011. MR**2742530**, DOI 10.1090/chel/372

## Additional Information

**Samuel Lin**- Affiliation: Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755
- MR Author ID: 1214843
- Email: zhongenlin@gmail.com
**Benjamin Schmidt**- Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
- MR Author ID: 803074
- Email: schmidt@math.msu.edu
**Craig Sutton**- Affiliation: Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755
- MR Author ID: 707441
- ORCID: 0000-0003-2197-1407
- Email: craig.j.sutton@dartmouth.edu
- Received by editor(s): October 9, 2020
- Received by editor(s) in revised form: February 3, 2021, and February 16, 2021
- Published electronically: September 29, 2021
- Additional Notes: The third author was partially supported by a Simons Foundation Collaboration Grant
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**374**(2021), 8483-8530 - MSC (2020): Primary 58J53, 58J50, 53C20
- DOI: https://doi.org/10.1090/tran/8417
- MathSciNet review: 4337919