Non-associative Frobenius algebras for simply laced Chevalley groups
HTML articles powered by AMS MathViewer
- by Tom De Medts and Michiel Van Couwenberghe PDF
- Trans. Amer. Math. Soc. 374 (2021), 8715-8774 Request permission
Abstract:
We provide an explicit construction for a class of commutative, non-associative algebras for each of the simple Chevalley groups of simply laced type. Moreover, we equip these algebras with an associating bilinear form, which turns them into Frobenius algebras. This class includes a 3876-dimensional algebra on which the Chevalley group of type $E_8$ acts by automorphisms. We also prove that these algebras admit the structure of (axial) decomposition algebras.References
- Eiichi Bannai and Tatsuro Ito, Algebraic combinatorics. I, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984. Association schemes. MR 882540
- Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. MR 1890629, DOI 10.1007/978-3-540-89394-3
- Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 7–9, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2005. Translated from the 1975 and 1982 French originals by Andrew Pressley. MR 2109105
- Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 1–3, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989. Translated from the French; Reprint of the 1975 edition. MR 979493
- Abraham Broer, The sum of generalized exponents and Chevalley’s restriction theorem for modules of covariants, Indag. Math. (N.S.) 6 (1995), no. 4, 385–396. MR 1365182, DOI 10.1016/0019-3577(96)81754-X
- Roger W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. MR 0407163
- Maurice Chayet and Skip Garibaldi, A class of continuous non-associative algebras arising from algebraic groups including $E_8$, Forum Math. Sigma 9 (2021), Paper No. e6, 22. MR 4202491, DOI 10.1017/fms.2020.66
- Arjeh M. Cohen, Point-line spaces related to buildings, Handbook of incidence geometry, North-Holland, Amsterdam, 1995, pp. 647–737. MR 1360727, DOI 10.1016/B978-044488355-1/50014-1
- J. H. Conway, A simple construction for the Fischer-Griess monster group, Invent. Math. 79 (1985), no. 3, 513–540. MR 782233, DOI 10.1007/BF01388521
- Tom De Medts, Simon F. Peacock, Sergey Shpectorov, and Michiel Van Couwenberghe, Decomposition algebras and axial algebras, J. Algebra 556 (2020), 287–314. MR 4082333, DOI 10.1016/j.jalgebra.2020.02.027
- Tom De Medts and Felix Rehren, Jordan algebras and 3-transposition groups, J. Algebra 478 (2017), 318–340. MR 3621676, DOI 10.1016/j.jalgebra.2017.01.025
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- Skip Garibaldi and Robert M. Guralnick, Simple groups stabilizing polynomials, Forum Math. Pi 3 (2015), e3, 41. MR 3406824, DOI 10.1017/fmp.2015.3
- Meinolf Geck and Götz Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR 1778802
- Robert L. Griess Jr., The friendly giant, Invent. Math. 69 (1982), no. 1, 1–102. MR 671653, DOI 10.1007/BF01389186
- J. I. Hall, F. Rehren, and S. Shpectorov, Universal axial algebras and a theorem of Sakuma, J. Algebra 421 (2015), 394–424. MR 3272388, DOI 10.1016/j.jalgebra.2014.08.035
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562
- A. A. Ivanov, The Monster group and Majorana involutions, Cambridge Tracts in Mathematics, vol. 176, Cambridge University Press, Cambridge, 2009. MR 2503090, DOI 10.1017/CBO9780511576812
- T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999. MR 1653294, DOI 10.1007/978-1-4612-0525-8
- Mark Reeder, Zero weight spaces and the Springer correspondence, Indag. Math. (N.S.) 9 (1998), no. 3, 431–441. MR 1692153, DOI 10.1016/S0019-3577(98)80010-4
- Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
Additional Information
- Tom De Medts
- Affiliation: Department of Mathematics: Algebra and Geometry, Ghent University, Krijgslaan 281–S25, 9000 Gent, Belgium
- MR Author ID: 701084
- ORCID: 0000-0002-9504-5353
- Email: tom.demedts@ugent.be
- Michiel Van Couwenberghe
- Affiliation: Department of Mathematics: Algebra and Geometry, Ghent University, Krijgslaan 281–S25, 9000 Gent, Belgium
- MR Author ID: 1361192
- ORCID: 0000-0001-8480-6586
- Email: michiel.vancouwenberghe@ugent.be
- Received by editor(s): May 5, 2020
- Received by editor(s) in revised form: March 30, 2021, and April 28, 2021
- Published electronically: September 16, 2021
- Additional Notes: Tom De Medts is the corresponding author
Michiel Van Couwenberghe is a Ph. D. fellow of the Research Foundation – Flanders (FWO) - © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 8715-8774
- MSC (2020): Primary 20F29, 17A36, 17D99, 17B10, 20G05
- DOI: https://doi.org/10.1090/tran/8484
- MathSciNet review: 4337927