On Chow-weight homology of geometric motives
HTML articles powered by AMS MathViewer
- by Mikhail V. Bondarko and Vladimir A. Sosnilo PDF
- Trans. Amer. Math. Soc. 375 (2022), 173-244 Request permission
Abstract:
We describe new Chow-weight (co)homology theories on the category $DM^{\mathrm {eff}}_{gm}(k,R)$ of effective geometric Voevodsky motives ($R$ is the coefficient ring). These theories are interesting “modifications” of motivic homology; Chow-weight homology detects whether a motive $M\in ObjDM^{\mathrm {eff}}_{gm}(k,R)$ is $r$-effective (i.e., belongs to the $r$th Tate twist $DM^{\mathrm {eff}}_{gm}(k,R)(r)$ of effective motives), bounds the weights of $M$ (in the sense of the Chow weight structure defined by the first author), and detects the effectivity of “the lower weight pieces” of $M$. Moreover, we calculate the connectivity of $M$ (in the sense of Voevodsky’s homotopy $t$-structure, i.e., we study motivic homology) and prove that the exponents of the higher motivic homology groups (of an “integral” motive) are finite whenever these groups are torsion. We apply the latter statement to the study of higher Chow groups of arbitrary varieties.
These motivic properties of $M$ have plenty of applications. They are closely related to the (co)homology of $M$; in particular, if the Chow groups of a variety $X$ vanish up to dimension $r-1$ then the highest Deligne weight factors of the (singular or étale) cohomology of $X$ with compact support are $r$-effective.
Our results yield vast generalizations of the so-called “decomposition of the diagonal” theorems, and we re-prove and extend some of earlier statements of this sort.
References
- Leovigildo Alonso Tarrío, Ana Jeremías López, and María José Souto Salorio, Construction of $t$-structures and equivalences of derived categories, Trans. Amer. Math. Soc. 355 (2003), no. 6, 2523–2543. MR 1974001, DOI 10.1090/S0002-9947-03-03261-6
- Joseph Ayoub, Motives and algebraic cycles: a selection of conjectures and open questions, Hodge theory and $L^2$-analysis, Adv. Lect. Math. (ALM), vol. 39, Int. Press, Somerville, MA, 2017, pp. 87–125. MR 3751289
- J. Ayoub, Topologie feuilletée et la conservativité des réalisations classiques en caractéristique nulle, preprint, 2018, http://user.math.uzh.ch/ayoub/PDF-Files/Feui-ConCon.pdf.
- Tom Bachmann, On the invertibility of motives of affine quadrics, Doc. Math. 22 (2017), 363–395. MR 3628786, DOI 10.25537/dm.2017v22.363-395
- Tom Bachmann, On the conservativity of the functor assigning to a motivic spectrum its motive, Duke Math. J. 167 (2018), no. 8, 1525–1571. MR 3807316, DOI 10.1215/00127094-2018-0002
- Paul Balmer and Marco Schlichting, Idempotent completion of triangulated categories, J. Algebra 236 (2001), no. 2, 819–834. MR 1813503, DOI 10.1006/jabr.2000.8529
- A. A. Beĭlinson, Height pairing between algebraic cycles, $K$-theory, arithmetic and geometry (Moscow, 1984–1986) Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 1–25. MR 923131, DOI 10.1007/BFb0078364
- Alexander Beilinson and Vadim Vologodsky, A DG guide to Voevodsky’s motives, Geom. Funct. Anal. 17 (2008), no. 6, 1709–1787. MR 2399083, DOI 10.1007/s00039-007-0644-5
- Manuel Blickle and Hélène Esnault, Rational singularities and rational points, Pure Appl. Math. Q. 4 (2008), no. 3, Special Issue: In honor of Fedor Bogomolov., 729–741. MR 2435842, DOI 10.4310/PAMQ.2008.v4.n3.a5
- Spencer Bloch, Lectures on algebraic cycles, Duke University Mathematics Series, IV, Duke University, Mathematics Department, Durham, N.C., 1980. MR 558224
- Spencer Bloch, Hélène Esnault, and Marc Levine, Decomposition of the diagonal and eigenvalues of Frobenius for Fano hypersurfaces, Amer. J. Math. 127 (2005), no. 1, 193–207. MR 2115665
- S. Bloch and V. Srinivas, Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983), no. 5, 1235–1253. MR 714776, DOI 10.2307/2374341
- M. V. Bondarko, Differential graded motives: weight complex, weight filtrations and spectral sequences for realizations; Voevodsky versus Hanamura, J. Inst. Math. Jussieu 8 (2009), no. 1, 39–97. MR 2461902, DOI 10.1017/S147474800800011X
- M. V. Bondarko, Weight structures vs. $t$-structures; weight filtrations, spectral sequences, and complexes (for motives and in general), J. K-Theory 6 (2010), no. 3, 387–504. MR 2746283, DOI 10.1017/is010012005jkt083
- Mikhail V. Bondarko, Motivically functorial coniveau spectral sequences; direct summands of cohomology of function fields, Doc. Math. Extra vol.: Andrei A. Suslin sixtieth birthday (2010), 33–117. MR 2804250
- M. V. Bondarko, $\Bbb Z[1/p]$-motivic resolution of singularities, Compos. Math. 147 (2011), no. 5, 1434–1446. MR 2834727, DOI 10.1112/S0010437X11005410
- Mikhail V. Bondarko, Mixed motivic sheaves (and weights for them) exist if ‘ordinary’ mixed motives do, Compos. Math. 151 (2015), no. 5, 917–956. MR 3347995, DOI 10.1112/S0010437X14007763
- Mikhail V. Bondarko, Intersecting the dimension and slice filtrations for motives, Homology Homotopy Appl. 20 (2018), no. 1, 259–274. MR 3775360, DOI 10.4310/HHA.2018.v20.n1.a16
- M. V. Bondarko, Gersten weight structures for motivic homotopy categories; retracts of cohomology of function fields, motivic dimensions, and coniveau spectral sequences, preprint, arXiv:1803.01432, 2018.
- M. V. Bondarko, On morphisms killing weights and Hurewicz-type theorems, subm. to Algebr. Geom. Topol., arXiv:1904.12853, 2019.
- Mikhail V. Bondarko, On infinite effectivity of motivic spectra and the vanishing of their motives, Doc. Math. 25 (2020), 811–840. MR 4137936, DOI 10.25537/dm.2020v25.811-840
- M. V. Bondarko, On Chow-pure cohomology and Euler characteristics for motives and varieties, and their relation to unramified cohomology and Brauer groups, arXiv:2003.10415.
- Mikhail V. Bondarko, On weight complexes, pure functors, and detecting weights, J. Algebra 574 (2021), 617–668. MR 4217889, DOI 10.1016/j.jalgebra.2021.02.005
- Mikhail Bondarko and Frédéric Déglise, Dimensional homotopy t-structures in motivic homotopy theory, Adv. Math. 311 (2017), 91–189. MR 3628213, DOI 10.1016/j.aim.2017.02.003
- M. V. Bondarko and M. A. Ivanov, On Chow weight structures for $cdh$-motives with integral coefficients, Algebra i Analiz 27 (2015), no. 6, 14–40; English transl., St. Petersburg Math. J. 27 (2016), no. 6, 869–888. MR 3589220, DOI 10.1090/spmj/1424
- M. V. Bondarko and D. Z. Kumallagov, Chow weight structures without projectivity and singularity resolution, Algebra i Analiz 30 (2018), no. 5, 57–83 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 30 (2019), no. 5, 803–819. MR 3856101, DOI 10.1090/spmj/1570
- M. V. Bondarko and D. Z. Kumallagov, The Chow-weight homology of motivic complexes and its relation to motivic homology, Vestn. St.-Peterbg. Univ. Mat. Mekh. Astron. 7(65) (2020), no. 4, 560–587 (Russian, with English and Russian summaries); English transl., Vestnik St. Petersburg Univ. Math. 53 (2020), no. 4, 377–397. MR 4195431, DOI 10.21638/spbu01.2020.401
- M. V. Bondarko and V. A. Sosnilo, Detecting the $c$-effectivity of motives, their weights, and dimension via Chow-weight (co)homology: a “mixed motivic decomposition of the diagonal”, preprint, arXiv:1411.6354, 2014.
- M. V. Bondarko and V. A. Sosnilo, On hulls and separating functors for triangulated categories, Algebra i Analiz 27 (2015), no. 6, 41–56 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 27 (2016), no. 6, 889–898. MR 3589221, DOI 10.1090/spmj/1425
- Mikhail V. Bondarko and Vladimir A. Sosnilo, Non-commutative localizations of additive categories and weight structures, J. Inst. Math. Jussieu 17 (2018), no. 4, 785–821. MR 3835523, DOI 10.1017/S1474748016000207
- Mikhail V. Bondarko and Vladimir A. Sosnilo, On constructing weight structures and extending them to idempotent completions, Homology Homotopy Appl. 20 (2018), no. 1, 37–57. MR 3775347, DOI 10.4310/HHA.2018.v20.n1.a3
- M. V. Bondarko and V. A. Sosnilo, On the weight lifting property for localizations of triangulated categories, Lobachevskii J. Math. 39 (2018), no. 7, 970–984. MR 3861581, DOI 10.1134/s1995080218070077
- Mikhail V. Bondarko and Vladimir A. Sosnilo, On purely generated $\alpha$-smashing weight structures and weight-exact localizations, J. Algebra 535 (2019), 407–455. MR 3980471, DOI 10.1016/j.jalgebra.2019.07.003
- M. V. Bondarko and S. V. Vostokov, The hearts of weight structures are the weakly idempotent complete categories, Chebyshevskiĭ Sb. 21 (2020), no. 3, 29–38 (English, with English and Russian summaries). MR 4196291
- Denis-Charles Cisinski and Frédéric Déglise, Integral mixed motives in equal characteristic, Doc. Math. Extra vol.: Alexander S. Merkurjev’s sixtieth birthday (2015), 145–194. MR 3404379
- Denis-Charles Cisinski and Frédéric Déglise, Étale motives, Compos. Math. 152 (2016), no. 3, 556–666. MR 3477640, DOI 10.1112/S0010437X15007459
- Denis-Charles Cisinski and Frédéric Déglise, Triangulated categories of mixed motives, Springer Monographs in Mathematics, Springer, Cham, [2019] ©2019. MR 3971240, DOI 10.1007/978-3-030-33242-6
- Frédéric Déglise, Around the Gysin triangle. II, Doc. Math. 13 (2008), 613–675. MR 2466188
- F. Déglise, Modules homotopiques, Doc. Math. 16 (2011), 411–455 (French, with English summary). MR 2823365
- P. Deligne, Théoréme d’intégralité, Appendix to “Le niveau de la cohomologie des intersections complétes” by N. Katz, Exposé XXI in SGA 7, Lecture Notes in Mathematics, vol. 340, Springer-Verlag, New York, 1973, pp. 363–400.
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520
- Hélène Esnault, Varieties over a finite field with trivial Chow group of 0-cycles have a rational point, Invent. Math. 151 (2003), no. 1, 187–191. MR 1943746, DOI 10.1007/s00222-002-0261-8
- Hélène Esnault and Marc Levine, Surjectivity of cycle maps, Astérisque 218 (1993), 203–226. Journées de Géométrie Algébrique d’Orsay (Orsay, 1992). MR 1265315
- N. Fakhruddin and C. S. Rajan, Congruences for rational points on varieties over finite fields, Math. Ann. 333 (2005), no. 4, 797–809. MR 2195144, DOI 10.1007/s00208-005-0697-4
- H. Gillet and C. Soulé, Descent, motives and $K$-theory, J. Reine Angew. Math. 478 (1996), 127–176. MR 1409056, DOI 10.1515/crll.1996.478.127
- S. Gorchinskiy and V. Guletskiĭ, Non-trivial elements in the Abel-Jacobi kernels of higher-dimensional varieties, Adv. Math. 241 (2013), 162–191. MR 3053709, DOI 10.1016/j.aim.2013.03.020
- Annette Huber, Realization of Voevodsky’s motives, J. Algebraic Geom. 9 (2000), no. 4, 755–799. MR 1775312
- Annette Huber and Bruno Kahn, The slice filtration and mixed Tate motives, Compos. Math. 142 (2006), no. 4, 907–936. MR 2249535, DOI 10.1112/S0010437X06002107
- Uwe Jannsen, Mixed motives and algebraic $K$-theory, Lecture Notes in Mathematics, vol. 1400, Springer-Verlag, Berlin, 1990. With appendices by S. Bloch and C. Schoen. MR 1043451, DOI 10.1007/BFb0085080
- Bruno Kahn, Algebraic $K$-theory, algebraic cycles and arithmetic geometry, Handbook of $K$-theory. Vol. 1, 2, Springer, Berlin, 2005, pp. 351–428. MR 2181827, DOI 10.1007/3-540-27855-9_{9}
- Bruno Kahn, Zeta functions and motives, Pure Appl. Math. Q. 5 (2009), no. 1, 507–570. MR 2520468, DOI 10.4310/PAMQ.2009.v5.n1.a16
- Bruno Kahn and Marc Levine, Motives of Azumaya algebras, J. Inst. Math. Jussieu 9 (2010), no. 3, 481–599. MR 2650808, DOI 10.1017/S1474748010000022
- Bruno Kahn and Ramdorai Sujatha, Birational motives, II: Triangulated birational motives, Int. Math. Res. Not. IMRN 22 (2017), 6778–6831. MR 3737321, DOI 10.1093/imrn/rnw184
- Shane Kelly, Voevodsky motives and $l$dh-descent, Astérisque 391 (2017), 125 (English, with English and French summaries). MR 3673293
- Kelly S. Triangulated categories of motives in positive characteristic, PhD thesis of Université Paris 13 and of the Australian National University, 2012, http://arxiv.org/abs/1305.5349
- Shane Kelly and Shuji Saito, Weight homology of motives, Int. Math. Res. Not. IMRN 13 (2017), 3938–3984. MR 3671508, DOI 10.1093/imrn/rnw111
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180, DOI 10.1007/978-3-662-03276-3
- Robert Laterveer, Algebraic varieties with small Chow groups, J. Math. Kyoto Univ. 38 (1998), no. 4, 673–694. MR 1669995, DOI 10.1215/kjm/1250518004
- Marc Levine, Yaping Yang, Gufang Zhao, and Joël Riou, Algebraic elliptic cohomology theory and flops I, Math. Ann. 375 (2019), no. 3-4, 1823–1855. MR 4023393, DOI 10.1007/s00208-019-01880-x
- Carlo Mazza, Vladimir Voevodsky, and Charles Weibel, Lecture notes on motivic cohomology, Clay Mathematics Monographs, vol. 2, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2006. MR 2242284
- David Pauksztello, Compact corigid objects in triangulated categories and co-$t$-structures, Cent. Eur. J. Math. 6 (2008), no. 1, 25–42. MR 2379950, DOI 10.2478/s11533-008-0003-2
- Kapil H. Paranjape, Cohomological and cycle-theoretic connectivity, Ann. of Math. (2) 139 (1994), no. 3, 641–660. MR 1283872, DOI 10.2307/2118574
- Chris A. M. Peters and Joseph H. M. Steenbrink, Mixed Hodge structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 52, Springer-Verlag, Berlin, 2008. MR 2393625
- R. van Dobben de Bruyn, The answer, https://mathoverflow.net/a/356524/2191.
- Vladimir Sosnilo, Theorem of the heart in negative K-theory for weight structures, Doc. Math. 24 (2019), 2137–2158. MR 4033821
- A. Suslin, On the $K$-theory of algebraically closed fields, Invent. Math. 73 (1983), no. 2, 241–245. MR 714090, DOI 10.1007/BF01394024
- Andrei Suslin and Vladimir Voevodsky, Relative cycles and Chow sheaves, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 10–86. MR 1764199
- Burt Totaro, The motive of a classifying space, Geom. Topol. 20 (2016), no. 4, 2079–2133. MR 3548464, DOI 10.2140/gt.2016.20.2079
- Charles Vial, Remarks on motives of abelian type, Tohoku Math. J. (2) 69 (2017), no. 2, 195–220. MR 3682163, DOI 10.2748/tmj/1498269623
- Voevodsky V. Triangulated category of motives, in: Voevodsky V., Suslin A., and Friedlander E., Cycles, transfers and motivic homology theories, Annals of Mathematical studies, vol. 143, Princeton University Press, 2000, 188–238.
- Eric M. Friedlander and Vladimir Voevodsky, Bivariant cycle cohomology, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 138–187. MR 1764201
- Claire Voisin, Chow rings, decomposition of the diagonal, and the topology of families, Annals of Mathematics Studies, vol. 187, Princeton University Press, Princeton, NJ, 2014. MR 3186044, DOI 10.1515/9781400850532
- Jörg Wildeshaus, Chow motives without projectivity, Compos. Math. 145 (2009), no. 5, 1196–1226. MR 2551994, DOI 10.1112/S0010437X0900414X
Additional Information
- Mikhail V. Bondarko
- Affiliation: St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia
- MR Author ID: 629836
- Email: m.bondarko@spbu.ru
- Vladimir A. Sosnilo
- Affiliation: Laboratory “Modern Algebra and Applications”, St. Petersburg State University, 14th line, 29B, 199178 Saint Petersburg, Russia; and St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Fontanka, 27, 191023 Saint Petersburg, Russia
- MR Author ID: 1200241
- Email: vsosnilo@gmail.com
- Received by editor(s): October 10, 2019
- Received by editor(s) in revised form: June 30, 2020, and January 19, 2021
- Published electronically: November 5, 2021
- Additional Notes: The main results of the paper were obtained under support of the Russian Science Foundation grant no. 16-11-10200. The second author was also supported by the grant of the Government of the Russian Federation for the state support of scientific research carried out under the supervision of leading scientists, agreement 14.W03.31.0030 dated 15.02.2018, and by the grant of Ministry of Science and Higher Education of the Russian Federation, agreement 075–15–2019–1619
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 173-244
- MSC (2020): Primary 14C15, 18G80, 18E40; Secondary 14C30, 18E35
- DOI: https://doi.org/10.1090/tran/8467
- MathSciNet review: 4358666