Pro-isomorphic zeta functions of nilpotent groups and Lie rings under base extension
HTML articles powered by AMS MathViewer
- by Mark N. Berman, Itay Glazer and Michael M. Schein PDF
- Trans. Amer. Math. Soc. 375 (2022), 1051-1100 Request permission
Abstract:
We consider pro-isomorphic zeta functions of the groups $\Gamma (\mathcal {O}_K)$, where $\Gamma$ is a unipotent group scheme defined over $\mathbb {Z}$ and $K$ varies over all number fields. Under certain conditions, we show that these functions have a fine Euler decomposition with factors indexed by primes $\mathfrak {p}$ of $K$ and depending only on the structure of $\Gamma$, the degree $[K:\mathbb {Q}]$, and the cardinality of the residue field $\mathcal {O}_K / \mathfrak {p}$. We show that the factors satisfy a certain uniform rationality and study their dependence on $[K:\mathbb {Q}]$. Explicit computations are given for several families of unipotent groups.References
- M. N. Berman, Proisomorphic zeta functions of groups, Ph.D. thesis, University of Oxford, 2005.
- Mark N. Berman, Uniformity and functional equations for local zeta functions of $\mathfrak {K}$-split algebraic groups, Amer. J. Math. 133 (2011), no. 1, 1–27. MR 2752933, DOI 10.1353/ajm.2011.0008
- Mark N. Berman, Jamshid Derakhshan, Uri Onn, and Pirita Paajanen, Uniform cell decomposition with applications to Chevalley groups, J. Lond. Math. Soc. (2) 87 (2013), no. 2, 586–606. MR 3046287, DOI 10.1112/jlms/jds056
- Mark N. Berman and Benjamin Klopsch, A nilpotent group without local functional equations for pro-isomorphic subgroups, J. Group Theory 18 (2015), no. 3, 489–510. MR 3341526, DOI 10.1515/jgth-2015-0005
- M. N. Berman, B. Klopsch, and U. Onn, On pro-isomorphic zeta functions of ${D}^\ast$-groups of even Hirsch length, arXiv/1511.06360v3.
- Mark N. Berman, Benjamin Klopsch, and Uri Onn, A family of class-2 nilpotent groups, their automorphisms and pro-isomorphic zeta functions, Math. Z. 290 (2018), no. 3-4, 909–935. MR 3856837, DOI 10.1007/s00209-018-2045-x
- Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. MR 2133266
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- Katie L. Bright and Carla D. Savage, The geometry of lecture hall partitions and quadratic permutation statistics, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), Discrete Math. Theor. Comput. Sci. Proc., AN, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2010, pp. 569–580 (English, with English and French summaries). MR 2673867
- Angela Carnevale, Michael M. Schein, and Christopher Voll, Generalized Igusa functions and ideal growth in nilpotent Lie rings, Preprint, arXiv:1903.03090.
- Angela Carnevale, Michael M. Schein, and Christopher Voll, Generalized Igusa functions and ideal growth in nilpotent Lie rings, Sém. Lothar. Combin. 84B (2020), Art. 71.
- Angela Carnevale, Shai Shechter, and Christopher Voll, Enumerating traceless matrices over compact discrete valuation rings, Israel J. Math. 227 (2018), no. 2, 957–986. MR 3846349, DOI 10.1007/s11856-018-1755-4
- Raf Cluckers, Presburger sets and $p$-minimal fields, J. Symbolic Logic 68 (2003), no. 1, 153–162. MR 1959315, DOI 10.2178/jsl/1045861509
- Raf Cluckers, Julia Gordon, and Immanuel Halupczok, Integrability of oscillatory functions on local fields: transfer principles, Duke Math. J. 163 (2014), no. 8, 1549–1600. MR 3210968, DOI 10.1215/00127094-2713482
- Raf Cluckers and Immanuel Halupczok, Integration of functions of motivic exponential class, uniform in all non-archimedean local fields of characteristic zero, J. Éc. polytech. Math. 5 (2018), 45–78 (English, with English and French summaries). MR 3732692, DOI 10.5802/jep.63
- Marcus P. F. du Sautoy, Zeta functions of groups and rings: uniformity, Israel J. Math. 86 (1994), no. 1-3, 1–23. MR 1276129, DOI 10.1007/BF02773672
- Marcus du Sautoy, A nilpotent group and its elliptic curve: non-uniformity of local zeta functions of groups, Israel J. Math. 126 (2001), 269–288. MR 1882040, DOI 10.1007/BF02784157
- Marcus du Sautoy and Fritz Grunewald, Analytic properties of zeta functions and subgroup growth, Ann. of Math. (2) 152 (2000), no. 3, 793–833. MR 1815702, DOI 10.2307/2661355
- Marcus du Sautoy and Fritz Grunewald, Zeta functions of groups and rings, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 131–149. MR 2275592
- Marcus P. F. du Sautoy and Alexander Lubotzky, Functional equations and uniformity for local zeta functions of nilpotent groups, Amer. J. Math. 118 (1996), no. 1, 39–90. MR 1375303
- Marcus du Sautoy and Luke Woodward, Zeta functions of groups and rings, Lecture Notes in Mathematics, vol. 1925, Springer-Verlag, Berlin, 2008. MR 2371185, DOI 10.1007/978-3-540-74776-5
- Duong H. Dung and Christopher Voll, Uniform analytic properties of representation zeta functions of finitely generated nilpotent groups, Trans. Amer. Math. Soc. 369 (2017), no. 9, 6327–6349. MR 3660223, DOI 10.1090/tran/6879
- Anton Evseev, Reduced zeta functions of Lie algebras, J. Reine Angew. Math. 633 (2009), 197–211. MR 2561201, DOI 10.1515/CRELLE.2009.065
- S. Ezzat, Irreducible representations of a family of groups of maximal nilpotency class I: the non-exceptional case, Preprint, arXiv:1407.2902.
- S. Ezzat, Representation growth of maximal class groups: various exceptional cases, Preprint, arXiv:1410.4992.
- S. Ezzat, Representation growth of finitely generated torsion-free nilpotent groups: methods and examples, Ph.D. thesis, University of Canterbury, 2012.
- Fritz Grunewald and Dan Segal, Reflections on the classification of torsion-free nilpotent groups, Group theory, Academic Press, London, 1984, pp. 121–158. MR 780569
- F. J. Grunewald, D. Segal, and G. C. Smith, Subgroups of finite index in nilpotent groups, Invent. Math. 93 (1988), no. 1, 185–223. MR 943928, DOI 10.1007/BF01393692
- Philip Hall, The Edmonton notes on nilpotent groups, Queen Mary College Mathematics Notes, Queen Mary College, Mathematics Department, London, 1969. MR 0283083
- K. Hey, Analytische Zahlentheorie in systemen hyperkomplexer Zahlen, Ph.D. thesis, Universität Hamburg, 1929.
- Ehud Hrushovski, Ben Martin, and Silvain Rideau, Definable equivalence relations and zeta functions of groups, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 10, 2467–2537. With an appendix by Raf Cluckers. MR 3852185, DOI 10.4171/JEMS/817
- Jun-ichi Igusa, Universal $p$-adic zeta functions and their functional equations, Amer. J. Math. 111 (1989), no. 5, 671–716. MR 1020825, DOI 10.2307/2374877
- Istvan Kovacs, Daniel S. Silver, and Susan G. Williams, Determinants of commuting-block matrices, Amer. Math. Monthly 106 (1999), no. 10, 950–952. MR 1732497, DOI 10.2307/2589750
- S. Lee and C. Voll, Zeta functions of integral nilpotent quiver representations, Preprint, arXiv:2006.12346.
- Alexander Lubotzky and Avinoam Mann, On groups of polynomial subgroup growth, Invent. Math. 104 (1991), no. 3, 521–533. MR 1106747, DOI 10.1007/BF01245088
- Alexander Lubotzky, Avinoam Mann, and Dan Segal, Finitely generated groups of polynomial subgroup growth, Israel J. Math. 82 (1993), no. 1-3, 363–371. MR 1239055, DOI 10.1007/BF02808118
- Alexander Lubotzky and Dan Segal, Subgroup growth, Progress in Mathematics, vol. 212, Birkhäuser Verlag, Basel, 2003. MR 1978431, DOI 10.1007/978-3-0348-8965-0
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Angus Macintyre, Rationality of $p$-adic Poincaré series: uniformity in $p$, Ann. Pure Appl. Logic 49 (1990), no. 1, 31–74. MR 1076249, DOI 10.1016/0168-0072(90)90050-C
- J. S. Milne, Algebraic groups, Cambridge Studies in Advanced Mathematics, vol. 170, Cambridge University Press, Cambridge, 2017. The theory of group schemes of finite type over a field. MR 3729270, DOI 10.1017/9781316711736
- Hugh L. Montgomery and Robert C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007. MR 2378655
- Johan Pas, Uniform $p$-adic cell decomposition and local zeta functions, J. Reine Angew. Math. 399 (1989), 137–172. MR 1004136, DOI 10.1515/crll.1989.399.137
- Mohan S. Putcha, Connected algebraic monoids, Trans. Amer. Math. Soc. 272 (1982), no. 2, 693–709. MR 662061, DOI 10.1090/S0002-9947-1982-0662061-8
- Ichirô Satake, Theory of spherical functions on reductive algebraic groups over ${\mathfrak {p}}$-adic fields, Inst. Hautes Études Sci. Publ. Math. 18 (1963), 5–69. MR 195863
- Michael M. Schein and Christopher Voll, Normal zeta functions of the Heisenberg groups over number rings I: the unramified case, J. Lond. Math. Soc. (2) 91 (2015), no. 1, 19–46. MR 3338607, DOI 10.1112/jlms/jdu061
- Michael M. Schein and Christopher Voll, Normal zeta functions of the Heisenberg groups over number rings II—the non-split case, Israel J. Math. 211 (2016), no. 1, 171–195. MR 3474960, DOI 10.1007/s11856-015-1271-8
- John Scheuneman, Two-step nilpotent Lie algebras, J. Algebra 7 (1967), 152–159. MR 217134, DOI 10.1016/0021-8693(67)90052-X
- Dan Segal, On the automorphism groups of certain Lie algebras, Math. Proc. Cambridge Philos. Soc. 106 (1989), no. 1, 67–76. MR 994080, DOI 10.1017/S0305004100067980
- R. Snocken, Zeta functions of groups and rings, Ph.D. thesis, University of Southampton, 2012.
- A. Stasinski and C. Voll, Representation zeta functions of nilpotent groups and generating functions for Weyl groups of type $B$, Amer. J. Math. 136 (2014), no. 2, 501–550. MR 3188068, DOI 10.1353/ajm.2014.0010
- John R. Stembridge and Debra J. Waugh, A Weyl group generating function that ought to be better known, Indag. Math. (N.S.) 9 (1998), no. 3, 451–457. MR 1692145, DOI 10.1016/S0019-3577(98)80012-8
- Tsuneo Tamagawa, On the $\zeta$-functions of a division algebra, Ann. of Math. (2) 77 (1963), 387–405. MR 144928, DOI 10.2307/1970221
- G. Taylor, Zeta functions of algebras and resolution of singularities, Ph.D. thesis, University of Cambridge, 2001.
- M. R. Vaughan-Lee, Varieties of Lie algebras, Quart. J. Math. Oxford Ser. (2) 21 (1970), 297–308. MR 269710, DOI 10.1093/qmath/21.3.297
- Michèle Vergne, Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes, Bull. Soc. Math. France 98 (1970), 81–116 (French). MR 289609
- Christopher Voll, Zeta functions of groups and enumeration in Bruhat-Tits buildings, Amer. J. Math. 126 (2004), no. 5, 1005–1032. MR 2089080
- C. Voll, Functional equations for local normal zeta functions of nilpotent groups, Geom. Funct. Anal. 15 (2005), no. 1, 274–295. With an appendix by A. Beauville. MR 2140633, DOI 10.1007/s00039-005-0506-y
- Christopher Voll, Functional equations for zeta functions of groups and rings, Ann. of Math. (2) 172 (2010), no. 2, 1181–1218. MR 2680489, DOI 10.4007/annals.2010.172.1185
- Christopher Voll, A newcomer’s guide to zeta functions of groups and rings, Lectures on profinite topics in group theory, London Math. Soc. Stud. Texts, vol. 77, Cambridge Univ. Press, Cambridge, 2011, pp. 99–144. MR 2807857
- Christopher Voll, Local functional equations for submodule zeta functions associated to nilpotent algebras of endomorphisms, Int. Math. Res. Not. IMRN 7 (2019), 2137–2176. MR 3938319, DOI 10.1093/imrn/rnx186
- Christopher Voll, Ideal zeta functions associated to a family of class-2-nilpotent Lie rings, Q. J. Math. 71 (2020), no. 3, 959–980. MR 4142717, DOI 10.1093/qmathj/haaa010
Additional Information
- Mark N. Berman
- Affiliation: Department of Mathematics, Ort Braude College, P.O. Box 78, Snunit St. 51, Karmiel 2161002, Israel
- MR Author ID: 925102
- Email: berman@braude.ac.il
- Itay Glazer
- Affiliation: Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, Illinois 60208
- MR Author ID: 1273292
- Email: itayglazer@gmail.com
- Michael M. Schein
- Affiliation: Department of Mathematics, Bar-Ilan University, Ramat Gan 5290002, Israel
- MR Author ID: 794455
- ORCID: 0000-0003-3914-803X
- Email: mschein@math.biu.ac.il
- Received by editor(s): July 9, 2020
- Received by editor(s) in revised form: March 22, 2021, May 19, 2021, and May 30, 2021
- Published electronically: December 1, 2021
- Additional Notes: The third author was supported by grant 1246/2014 from the German-Israeli Foundation for Scientific Research and Development.
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 1051-1100
- MSC (2020): Primary 11M41, 20E07
- DOI: https://doi.org/10.1090/tran/8506
- MathSciNet review: 4369243