Waist of maps measured via Urysohn width
HTML articles powered by AMS MathViewer
- by Alexey Balitskiy and Aleksandr Berdnikov PDF
- Trans. Amer. Math. Soc. 375 (2022), 1261-1279 Request permission
Abstract:
We discuss various questions of the following kind: for a continuous map $X \to Y$ from a compact metric space to a simplicial complex, can one guarantee the existence of a fiber large in the sense of Urysohn width? The $d$-width measures how well a space can be approximated by a $d$-dimensional complex. The results of this paper include the following.
-
Any piecewise linear map $f: [0,1]^{m+2} \to Y^m$ from the unit euclidean $(m+2)$-cube to an $m$-polyhedron must have a fiber of $1$-width at least $\frac {1}{2\beta m +m^2 + m + 1}$, where $\beta = \sup _{y\in Y} rkH_1(f^{-1}(y))$ measures the topological complexity of the map.
-
There exists a piecewise smooth map $X^{3m+1} \to \mathbb {R}^m$, with $X$ a riemannian $(3m+1)$-manifold of large $3m$-width, and with all fibers being topological $(2m+1)$-balls of arbitrarily small $(m+1)$-width.
References
- Arseniy Akopyan, Alfredo Hubard, and Roman Karasev, Lower and upper bounds for the waists of different spaces, Topol. Methods Nonlinear Anal. 53 (2019), no. 2, 457–490. MR 3983982, DOI 10.12775/tmna.2019.008
- A. Akopyan, R. Karasev, and A. Volovikov, Borsuk-Ulam type theorems for metric spaces, preprint, arXiv:1209.1249, 2012.
- P. Alexandroff, Notes supplémentaires au “Mémoire sur les multiplicités Cantoriennes”, rédigées d’après les papiers posthumes de Paul Urysohn, Fundamenta Mathematicae, 1(8):352–359, 1926.
- Florent Balacheff, Measurements of Riemannian two-disks and two-spheres, Pacific J. Math. 275 (2015), no. 1, 167–181. MR 3336932, DOI 10.2140/pjm.2015.275.167
- Alexey Balitskiy and Aleksandr Berdnikov, Local-to-global Urysohn width estimates, J. Reine Angew. Math. 780 (2021), 265–274. MR 4333983, DOI 10.1515/crelle-2021-0047
- Richárd Balka, Dimensions of fibers of generic continuous maps, Monatsh. Math. 184 (2017), no. 3, 339–378. MR 3709302, DOI 10.1007/s00605-017-1067-5
- L. E. J. Brouwer, Über den natürlichen Dimensionsbegriff, J. Reine Angew. Math. 142 (1913), 146–152 (German). MR 1580864, DOI 10.1515/crll.1913.142.146
- Mikhael Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983), no. 1, 1–147. MR 697984
- M. Gromov, Width and related invariants of Riemannian manifolds, Astérisque 163-164 (1988), 6, 93–109, 282 (1989) (English, with French summary). On the geometry of differentiable manifolds (Rome, 1986). MR 999972
- M. Gromov, Isoperimetry of waists and concentration of maps, Geom. Funct. Anal. 13 (2003), no. 1, 178–215. MR 1978494, DOI 10.1007/s000390300004
- L. Guth, Lipschitz maps from surfaces, Geom. Funct. Anal. 15 (2005), no. 5, 1052–1099. MR 2221158, DOI 10.1007/s00039-005-0532-9
- Larry Guth, Systolic inequalities and minimal hypersurfaces, Geom. Funct. Anal. 19 (2010), no. 6, 1688–1692. MR 2594618, DOI 10.1007/s00039-010-0052-0
- L. Guth, The waist inequality in Gromov’s work, In H. Holden and R. Piene, editors, The Abel Prize 2008-2012, Springer, Berlin, 2014, pp. 181–195.
- Larry Guth, Volumes of balls in Riemannian manifolds and Uryson width, J. Topol. Anal. 9 (2017), no. 2, 195–219. MR 3622232, DOI 10.1142/S1793525317500029
- Roman Karasev and Alexey Volovikov, Waist of the sphere for maps to manifolds, Topology Appl. 160 (2013), no. 13, 1592–1602. MR 3091333, DOI 10.1016/j.topol.2013.06.005
- B. Knaster, C. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für $n$-dimensionale Simplexe, Fund. Math., 14 (1929), no. 1, 132–137.
- Henri Lebesgue, Sur la non-applicabilité de deux domaines appartenant respectivement à des espaces à $n$ et $n+p$ dimensions, Math. Ann. 70 (1911), no. 2, 166–168 (French). MR 1511616, DOI 10.1007/BF01461155
- Yevgeny Liokumovich, Slicing a 2-sphere, J. Topol. Anal. 6 (2014), no. 4, 573–590. MR 3238098, DOI 10.1142/S1793525314500228
- Y. Liokumovich and D. Maximo, Waist inequality for 3-manifolds with positive scalar curvature, preprint, arXiv:2012.12478, 2020.
- Marsel Matdinov, Size of components of a cube coloring, Discrete Comput. Geom. 50 (2013), no. 1, 185–193. MR 3070545, DOI 10.1007/s00454-013-9504-2
- A. Nabutovsky, Linear bounds for constants in Gromov’s systolic inequality and related results, preprint arXiv:1909.12225, 2019.
- Panos Papasoglu, Uryson width and volume, Geom. Funct. Anal. 30 (2020), no. 2, 574–587. MR 4108616, DOI 10.1007/s00039-020-00533-5
- Jian Yi Shi, The Kazhdan-Lusztig cells in certain affine Weyl groups, Lecture Notes in Mathematics, vol. 1179, Springer-Verlag, Berlin, 1986. MR 835214, DOI 10.1007/BFb0074968
- V. M. Tikhomirov, Nekotorye voprosy teorii priblizheniĭ, Izdat. Moskov. Univ., Moscow, 1976 (Russian). MR 0487161
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
Additional Information
- Alexey Balitskiy
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, 182 Memorial Dr., Cambridge, Massachusetts 02142; and Institute for Information Transmission Problems RAS, Bolshoy Karetny per. 19, Moscow 127994, Russia
- MR Author ID: 1108036
- ORCID: 0000-0003-3169-1601
- Email: abalitskiy@ias.edu
- Aleksandr Berdnikov
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, 182 Memorial Dr., Cambridge, Massachusetts 02142
- MR Author ID: 1279364
- Email: aberdnik@ias.edu
- Received by editor(s): December 28, 2020
- Received by editor(s) in revised form: June 24, 2021
- Published electronically: December 2, 2021
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 1261-1279
- MSC (2020): Primary 51F99
- DOI: https://doi.org/10.1090/tran/8523
- MathSciNet review: 4369247