$L^p$-Bernstein inequalities on $C^2$-domains and applications to discretization
HTML articles powered by AMS MathViewer
- by Feng Dai and Andriy Prymak PDF
- Trans. Amer. Math. Soc. 375 (2022), 1933-1976 Request permission
Abstract:
We prove a new Bernstein type inequality in $L^p$ spaces associated with the normal and the tangential derivatives on the boundary of a general compact $C^2$-domain. We give two applications: Marcinkiewicz type inequality for discretization of $L^p$ norms and positive cubature formulas. Both results are optimal in the sense that the number of function samples used has the order of the dimension of the corresponding space of algebraic polynomials.References
- Mirosław Baran, Bernstein type theorems for compact sets in $\textbf {R}^n$, J. Approx. Theory 69 (1992), no. 2, 156–166. MR 1160251, DOI 10.1016/0021-9045(92)90139-F
- Mirosław Baran, Plurisubharmonic extremal functions and complex foliations for the complement of convex sets in $\textbf {R}^n$, Michigan Math. J. 39 (1992), no. 3, 395–404. MR 1182495, DOI 10.1307/mmj/1029004594
- Mirosław Baran, Polynomial inequalities in Banach spaces, Constructive approximation of functions, Banach Center Publ., vol. 107, Polish Acad. Sci. Inst. Math., Warsaw, 2015, pp. 23–42. MR 3496845, DOI 10.4064/bc107-0-3
- Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802
- Peter Borwein and Tamás Erdélyi, Polynomials and polynomial inequalities, Graduate Texts in Mathematics, vol. 161, Springer-Verlag, New York, 1995. MR 1367960, DOI 10.1007/978-1-4612-0793-1
- D. Burns, N. Levenberg, S. Ma’u, and Sz. Révész, Monge-Ampère measures for convex bodies and Bernstein-Markov type inequalities, Trans. Amer. Math. Soc. 362 (2010), no. 12, 6325–6340. MR 2678976, DOI 10.1090/S0002-9947-2010-04892-5
- W. Chen and Z. Ditzian, Mixed and directional derivatives, Proc. Amer. Math. Soc. 108 (1990), no. 1, 177–185. MR 994773, DOI 10.1090/S0002-9939-1990-0994773-0
- G. M. Constantine and T. H. Savits, A multivariate Faà di Bruno formula with applications, Trans. Amer. Math. Soc. 348 (1996), no. 2, 503–520. MR 1325915, DOI 10.1090/S0002-9947-96-01501-2
- Feng Dai, Multivariate polynomial inequalities with respect to doubling weights and $A_\infty$ weights, J. Funct. Anal. 235 (2006), no. 1, 137–170. MR 2216443, DOI 10.1016/j.jfa.2005.09.009
- F. Daĭ, A. Primak, V. N. Temlyakov, and S. Yu. Tikhonov, Integral norm discretization and related problems, Uspekhi Mat. Nauk 74 (2019), no. 4(448), 3–58 (Russian, with Russian summary); English transl., Russian Math. Surveys 74 (2019), no. 4, 579–630. MR 3985711, DOI 10.4213/rm9892
- F. Dai, A. Prymak, V. N. Temlyakov, S. Yu. Tikhonov, and A. Shadrin, Sampling discretization of integral norms, Constr. Approx., DOI 10.1007/s00365-021-09539-0
- F. Dai, A. Prymak, A. Shadrin, V. Temlyakov, and S. Tikhonov, Entropy numbers and Marcinkiewicz-type discretization, J. Funct. Anal. 281 (2021), no. 6, Paper No. 109090, 25. MR 4262057, DOI 10.1016/j.jfa.2021.109090
- Feng Dai and Yuan Xu, Approximation theory and harmonic analysis on spheres and balls, Springer Monographs in Mathematics, Springer, New York, 2013. MR 3060033, DOI 10.1007/978-1-4614-6660-4
- Ronald A. DeVore and George G. Lorentz, Constructive approximation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. MR 1261635, DOI 10.1007/978-3-662-02888-9
- Z. Ditzian and A. Prymak, On Nikol’skii inequalities for domains in $\Bbb {R}^d$, Constr. Approx. 44 (2016), no. 1, 23–51. MR 3514403, DOI 10.1007/s00365-016-9335-5
- Z. Ditzian and V. Totik, Moduli of smoothness, Springer Series in Computational Mathematics, vol. 9, Springer-Verlag, New York, 1987. MR 914149, DOI 10.1007/978-1-4612-4778-4
- Moshe Dubiner, The theory of multi-dimensional polynomial approximation, J. Anal. Math. 67 (1995), 39–116. MR 1383490, DOI 10.1007/BF02787786
- Tamás Erdélyi, Notes on inequalities with doubling weights, J. Approx. Theory 100 (1999), no. 1, 60–72. MR 1710553, DOI 10.1006/jath.1999.3340
- T. Erdélyi, Arestov’s theorems on Bernstein’s inequality, J. Approx. Theory 250 (2020), 105323, 9., DOI 10.1016/j.jat.2019.105323
- Sergei Kalmykov, Béla Nagy, and Vilmos Totik, Bernstein- and Markov-type inequalities for rational functions, Acta Math. 219 (2017), no. 1, 21–63. MR 3765658, DOI 10.4310/ACTA.2017.v219.n1.a3
- C. K. Kobindarajah and D. S. Lubinsky, $L_p$ Markov-Bernstein inequalities on all arcs of the circle, J. Approx. Theory 116 (2002), no. 2, 343–368. MR 1911084, DOI 10.1006/jath.2002.3675
- Egor D. Kosov, Marcinkiewicz-type discretization of $L^p$-norms under the Nikolskii-type inequality assumption, J. Math. Anal. Appl. 504 (2021), no. 1, Paper No. 125358, 32. MR 4265699, DOI 10.1016/j.jmaa.2021.125358
- András Kroó, On Bernstein-Markov-type inequalities for multivariate polynomials in $L_q$-norm, J. Approx. Theory 159 (2009), no. 1, 85–96. MR 2533390, DOI 10.1016/j.jat.2008.10.006
- András Kroó, On optimal polynomial meshes, J. Approx. Theory 163 (2011), no. 9, 1107–1124. MR 2832746, DOI 10.1016/j.jat.2011.03.007
- András Kroó, Bernstein type inequalities on star-like domains in $\Bbb {R}^d$ with application to norming sets, Bull. Math. Sci. 3 (2013), no. 3, 349–361. MR 3128035, DOI 10.1007/s13373-013-0033-3
- András Kroó, On the existence of optimal meshes in every convex domain on the plane, J. Approx. Theory 238 (2019), 26–37. MR 3912665, DOI 10.1016/j.jat.2017.02.004
- András Kroó and Szilárd Révész, On Bernstein and Markov-type inequalities for multivariate polynomials on convex bodies, J. Approx. Theory 99 (1999), no. 1, 134–152. MR 1696561, DOI 10.1006/jath.1998.3314
- D. S. Lubinsky, Marcinkiewicz-Zygmund inequalities: methods and results, Recent progress in inequalities (Niš, 1996) Math. Appl., vol. 430, Kluwer Acad. Publ., Dordrecht, 1998, pp. 213–240. MR 1609947
- D. S. Lubinsky, On Marcinkiewicz-Zygmund inequalities at Jacobi zeros and their Bessel function cousins, Complex analysis and dynamical systems VII, Contemp. Math., vol. 699, Amer. Math. Soc., Providence, RI, 2017, pp. 223–245. MR 3716116, DOI 10.1090/conm/699/14093
- D. S. Lubinsky, On sharp constants in Marcinkiewicz-Zygmund and Plancherel-Polya inequalities, Proc. Amer. Math. Soc. 142 (2014), no. 10, 3575–3584. MR 3238433, DOI 10.1090/S0002-9939-2014-12270-2
- Giuseppe Mastroianni and Vilmos Totik, Weighted polynomial inequalities with doubling and $A_\infty$ weights, Constr. Approx. 16 (2000), no. 1, 37–71. MR 1848841, DOI 10.1007/s003659910002
- S. De Marchi and A. Kroó, Marcinkiewicz-Zygmund type results in multivariate domains, Acta Math. Hungar. 154 (2018), no. 1, 69–89. MR 3746524, DOI 10.1007/s10474-017-0769-4
- Federico Piazzon, Optimal polynomial admissible meshes on some classes of compact subsets of $\Bbb {R}^d$, J. Approx. Theory 207 (2016), 241–264. MR 3494232, DOI 10.1016/j.jat.2016.02.015
- A. Prymak and O. Usoltseva, Christoffel functions on planar domains with piecewise smooth boundary, Acta Math. Hungar. 158 (2019), no. 1, 216–234. MR 3950209, DOI 10.1007/s10474-019-00945-2
- Yannis Sarantopoulos, Bounds on the derivatives of polynomials on Banach spaces, Math. Proc. Cambridge Philos. Soc. 110 (1991), no. 2, 307–312. MR 1113429, DOI 10.1017/S0305004100070389
- Vilmos Totik, Polynomial approximation on polytopes, Mem. Amer. Math. Soc. 232 (2014), no. 1091, vi+112. MR 3243131, DOI 10.1090/memo/1091
- Vilmos Totik, Polynomial approximation in several variables, J. Approx. Theory 252 (2020), 105364, 44. MR 4054980, DOI 10.1016/j.jat.2019.105364
- Guenther Walther, On a generalization of Blaschke’s rolling theorem and the smoothing of surfaces, Math. Methods Appl. Sci. 22 (1999), no. 4, 301–316. MR 1671447, DOI 10.1002/(SICI)1099-1476(19990310)22:4<301::AID-MMA42>3.3.CO;2-D
- Don R. Wilhelmsen, A Markov inequality in several dimensions, J. Approximation Theory 11 (1974), 216–220. MR 352826, DOI 10.1016/0021-9045(74)90012-4
Additional Information
- Feng Dai
- Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada
- MR Author ID: 660750
- ORCID: 0000-0003-3127-0874
- Email: fdai@ualberta.ca
- Andriy Prymak
- Affiliation: Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
- MR Author ID: 285977
- Email: prymak@gmail.com
- Received by editor(s): May 10, 2021
- Received by editor(s) in revised form: August 10, 2021
- Published electronically: December 20, 2021
- Additional Notes: The first author was supported by NSERC of Canada Discovery grant RGPIN-2020-03909, and the second author was supported by NSERC of Canada Discovery grant RGPIN-2020-05357.
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 1933-1976
- MSC (2020): Primary 42C05, 46N10, 42B99
- DOI: https://doi.org/10.1090/tran/8550
- MathSciNet review: 4378085