Demazure crystals for Kohnert polynomials
HTML articles powered by AMS MathViewer
- by Sami H. Assaf PDF
- Trans. Amer. Math. Soc. 375 (2022), 2147-2186
Abstract:
Kohnert polynomials are polynomials indexed by unit cell diagrams in the first quadrant defined earlier by the author and Searles that give a common generalization of Schubert polynomials and Demazure characters for the general linear group. Demazure crystals are certain truncations of normal crystals whose characters are Demazure characters. For each diagram satisfying a southwest condition, we construct a Demazure crystal whose character is the Kohnert polynomial for the given diagram, resolving an earlier conjecture of the author and Searles that these polynomials expand nonnegatively into Demazure characters. We give explicit formulas for the expansions with applications including a characterization of those diagrams for which the corresponding Kohnert polynomial is a single Demazure character.References
- Sam Armon, Sami Assaf, Grant Bowling, and Henry Ehrhard, Kohnert’s rule for flagged Schur modules, arXiv:2012.05382, 2021.
- Sami Assaf, Nonsymmetric Macdonald polynomials and a refinement of Kostka-Foulkes polynomials, Trans. Amer. Math. Soc. 370 (2018), no. 12, 8777–8796. MR 3864395, DOI 10.1090/tran/7374
- Sami Assaf, A bijective proof of Kohnert’s rule for Schubert polynomials, 2020. Combinatorial Theory, to appear.
- Sami Assaf and Nicolle González, Demazure crystals for specialized nonsymmetric Macdonald polynomials, J. Combin. Theory Ser. A 182 (2021), Paper No. 105463, 75. MR 4243366, DOI 10.1016/j.jcta.2021.105463
- Sami Assaf and Danjoseph Quijada, A Pieri rule for key polynomials, Sém. Lothar. Combin. 80B (2018), Art. 78, 12. MR 3940653
- Sami Assaf and Anne Schilling, A Demazure crystal construction for Schubert polynomials, Algebr. Comb. 1 (2018), no. 2, 225–247. MR 3856523, DOI 10.1007/s42081-018-0014-6
- Sami Assaf and Dominic Searles, Schubert polynomials, slide polynomials, Stanley symmetric functions and quasi-Yamanouchi pipe dreams, Adv. Math. 306 (2017), 89–122. MR 3581299, DOI 10.1016/j.aim.2016.10.015
- Sami Assaf and Dominic Searles, Kohnert tableaux and a lifting of quasi-Schur functions, J. Combin. Theory Ser. A 156 (2018), 85–118. MR 3762104, DOI 10.1016/j.jcta.2018.01.001
- Sami Assaf and Dominic Searles, Kohnert polynomials, Experiment. Math. (2019), To appear.
- Sami H. Assaf, Weak dual equivalence for polynomials, Ann. Comb., To appear.
- Sami H. Assaf, A generalization of Edelman-Greene insertion for Schubert polynomials, Algebr. Comb. 4 (2021), no. 2, 359–385. MR 4244377, DOI 10.5802/alco.160
- Michel Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53–88 (French). MR 354697, DOI 10.24033/asens.1261
- Michel Demazure, Une nouvelle formule des caractères, Bull. Sci. Math. (2) 98 (1974), no. 3, 163–172. MR 430001
- Paul Edelman and Curtis Greene, Balanced tableaux, Adv. in Math. 63 (1987), no. 1, 42–99. MR 871081, DOI 10.1016/0001-8708(87)90063-6
- William Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J. 65 (1992), no. 3, 381–420. MR 1154177, DOI 10.1215/S0012-7094-92-06516-1
- Ira M. Gessel, Multipartite $P$-partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 289–317. MR 777705, DOI 10.1090/conm/034/777705
- J. Haglund, M. Haiman, and N. Loehr, A combinatorial formula for nonsymmetric Macdonald polynomials, Amer. J. Math. 130 (2008), no. 2, 359–383. MR 2405160, DOI 10.1353/ajm.2008.0015
- M. Kashiwara, On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516. MR 1115118, DOI 10.1215/S0012-7094-91-06321-0
- Masaki Kashiwara, Crystalizing the $q$-analogue of universal enveloping algebras, Comm. Math. Phys. 133 (1990), no. 2, 249–260. MR 1090425, DOI 10.1007/BF02097367
- Masaki Kashiwara, The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J. 71 (1993), no. 3, 839–858.
- Masaki Kashiwara and Toshiki Nakashima, Crystal graphs for representations of the $q$-analogue of classical Lie algebras, J. Algebra 165 (1994), no. 2, 295–345. MR 1273277, DOI 10.1006/jabr.1994.1114
- Axel Kohnert, Weintrauben, Polynome, Tableaux, Bayreuth. Math. Schr. 38 (1991), 1–97 (German). Dissertation, Universität Bayreuth, Bayreuth, 1990. MR 1132534
- Witold Kraśkiewicz and Piotr Pragacz, Foncteurs de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), no. 9, 209–211 (French, with English summary). MR 883476
- Alain Lascoux and Marcel-Paul Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 13, 447–450 (French, with English summary). MR 660739
- Alain Lascoux and Marcel-Paul Schützenberger, Keys & standard bases, Invariant theory and tableaux (Minneapolis, MN, 1988) IMA Vol. Math. Appl., vol. 19, Springer, New York, 1990, pp. 125–144. MR 1035493
- Peter Littelmann, Crystal graphs and Young tableaux, J. Algebra 175 (1995), no. 1, 65–87. MR 1338967, DOI 10.1006/jabr.1995.1175
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498. MR 1035415, DOI 10.1090/S0894-0347-1990-1035415-6
- I. G. Macdonald, Notes on Schubert polynomials, LACIM, Univ. Quebec a Montreal, Montreal, PQ, 1991.
- S. Mason, An explicit construction of type A Demazure atoms, J. Algebraic Combin. 29 (2009), no. 3, 295–313. MR 2496309, DOI 10.1007/s10801-008-0133-4
- Victor Reiner and Mark Shimozono, Key polynomials and a flagged Littlewood-Richardson rule, J. Combin. Theory Ser. A 70 (1995), no. 1, 107–143. MR 1324004, DOI 10.1016/0097-3165(95)90083-7
- Victor Reiner and Mark Shimozono, Percentage-avoiding, northwest shapes and peelable tableaux, J. Combin. Theory Ser. A 82 (1998), no. 1, 1–73. MR 1616579, DOI 10.1006/jcta.1997.2841
- G. de B. Robinson, On the Representations of the Symmetric Group, Amer. J. Math. 60 (1938), no. 3, 745–760. MR 1507943, DOI 10.2307/2371609
- C. Schensted, Longest increasing and decreasing subsequences, Canadian J. Math. 13 (1961), 179–191. MR 121305, DOI 10.4153/CJM-1961-015-3
- Richard P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin. 5 (1984), no. 4, 359–372. MR 782057, DOI 10.1016/S0195-6698(84)80039-6
- Rudolf Winkel, Diagram rules for the generation of Schubert polynomials, J. Combin. Theory Ser. A 86 (1999), no. 1, 14–48. MR 1682961, DOI 10.1006/jcta.1998.2931
- Rudolf Winkel, A derivation of Kohnert’s algorithm from Monk’s rule, Sém. Lothar. Combin. 48 (2002), Art. B48f, 14.
Additional Information
- Sami H. Assaf
- Affiliation: Department of Mathematics, University of Southern California, 3620 S. Vermont Ave., Los Angeles, California 90089-2532
- MR Author ID: 775302
- Email: shassaf@usc.edu
- Received by editor(s): February 21, 2020
- Received by editor(s) in revised form: April 8, 2020, and September 13, 2021
- Published electronically: December 23, 2021
- Additional Notes: Work supported in part by NSF DMS-1763336
- © Copyright 2021 by the authors
- Journal: Trans. Amer. Math. Soc. 375 (2022), 2147-2186
- MSC (2020): Primary 05E05; Secondary 05E10, 14N15
- DOI: https://doi.org/10.1090/tran/8560
- MathSciNet review: 4378090