The size of the class of countable sequences of ordinals
HTML articles powered by AMS MathViewer
- by William Chan, Stephen Jackson and Nam Trang PDF
- Trans. Amer. Math. Soc. 375 (2022), 1725-1743 Request permission
Abstract:
Assume $\mathsf {ZF} + \mathsf {AD} + \mathsf {DC}_\mathbb {R}$. There is no injection of ${}^{<\omega _{1}}{\omega _{1}}$ (the set of countable length sequences of countable ordinals) into ${}^\omega \mathrm {ON}$ (the class of $\omega$ length sequences of ordinals). There is no injection of $[{\omega _{1}}]^{{\omega _{1}}}$ (the powerset of ${\omega _{1}}$) into ${}^{<{\omega _{1}}}\mathrm {ON}$ (the class of countable length sequences of ordinals).References
- William Chan, Definable combinatorics of strong partition cardinals, In preparation.
- William Chan, An introduction to combinatorics of determinacy, Trends in set theory, Contemp. Math., vol. 752, Amer. Math. Soc., [Providence], RI, [2020] ©2020, pp. 21–75. MR 4132099, DOI 10.1090/conm/752/15128
- William Chan and Stephen Jackson, Applications of infinity-borel codes to definability and definable cardinals, Submitted.
- William Chan and Stephen Jackson, Definable combinatorics at the first uncountable cardinal, Trans. Amer. Math. Soc. 374 (2021), no. 3, 2035–2056. MR 4216731, DOI 10.1090/tran/8281
- William Chan, Stephen Jackson, and Nam Trang, More definable combinatorics around the first and second uncountable cardinal, Submitted.
- Steve Jackson, Structural consequences of AD, Handbook of set theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 1753–1876. MR 2768700, DOI 10.1007/978-1-4020-5764-9_{2}2
- Alexander S. Kechris, $\textrm {AD}$ and projective ordinals, Cabal Seminar 76–77 (Proc. Caltech-UCLA Logic Sem., 1976–77) Lecture Notes in Math., vol. 689, Springer, Berlin, 1978, pp. 91–132. MR 526915
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Alexander S. Kechris and Yiannis N. Moschovakis, Notes on the theory of scales, Cabal Seminar 76–77 (Proc. Caltech-UCLA Logic Sem., 1976–77) Lecture Notes in Math., vol. 689, Springer, Berlin-New York, 1978, pp. 1–53. MR 526913
- Alexander S. Kechris, Robert M. Solovay, and John R. Steel, The axiom of determinacy and the prewellordering property, Cabal Seminar 77–79 (Proc. Caltech-UCLA Logic Sem., 1977–79) Lecture Notes in Math., vol. 839, Springer, Berlin-New York, 1981, pp. 101–125. MR 611169
- Alexander S. Kechris and W. Hugh Woodin, Generic codes for uncountable ordinals, partition properties, and elementary embeddings, Games, scales, and Suslin cardinals. The Cabal Seminar. Vol. I, Lect. Notes Log., vol. 31, Assoc. Symbol. Logic, Chicago, IL, 2008, pp. 379–397. MR 2463619, DOI 10.1017/CBO9780511546488.019
- Eugene M. Kleinberg, Infinitary combinatorics and the axiom of determinateness, Lecture Notes in Mathematics, Vol. 612, Springer-Verlag, Berlin-New York, 1977. MR 0479903, DOI 10.1007/BFb0069385
- Peter Koellner and W. Hugh Woodin, Large cardinals from determinacy, Handbook of set theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 1951–2119. MR 2768702, DOI 10.1007/978-1-4020-5764-9_{2}4
- Yiannis N. Moschovakis, Descriptive set theory, 2nd ed., Mathematical Surveys and Monographs, vol. 155, American Mathematical Society, Providence, RI, 2009. MR 2526093, DOI 10.1090/surv/155
- John R. Steel, Closure properties of pointclasses, Cabal Seminar 77–79 (Proc. Caltech-UCLA Logic Sem., 1977–79) Lecture Notes in Math., vol. 839, Springer, Berlin-New York, 1981, pp. 147–163. MR 611171
- Robert Van Wesep, Wadge degrees and descriptive set theory, Cabal Seminar 76–77 (Proc. Caltech-UCLA Logic Sem., 1976–77) Lecture Notes in Math., vol. 689, Springer, Berlin, 1978, pp. 151–170. MR 526917
- W. Hugh Woodin, The cardinals below $|[\omega _1]^{<\omega _1}|$, Ann. Pure Appl. Logic 140 (2006), no. 1-3, 161–232. MR 2224057, DOI 10.1016/j.apal.2005.09.014
- W. Hugh Woodin, The axiom of determinacy, forcing axioms, and the nonstationary ideal, Second revised edition, De Gruyter Series in Logic and its Applications, vol. 1, Walter de Gruyter GmbH & Co. KG, Berlin, 2010. MR 2723878, DOI 10.1515/9783110213171
Additional Information
- William Chan
- Affiliation: Department of Mathematics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- MR Author ID: 1204234
- Email: wchan3@andrew.cmu.edu
- Stephen Jackson
- Affiliation: Department of Mathematics, University of North Texas, Denton, Texas 76203
- MR Author ID: 255886
- ORCID: 0000-0002-2399-0129
- Email: Stephen.Jackson@unt.edu
- Nam Trang
- Affiliation: Department of Mathematics, University of North Texas, Denton, Texas 76203
- MR Author ID: 1067824
- ORCID: 0000-0002-7528-682X
- Email: Nam.Trang@unt.edu
- Received by editor(s): July 14, 2021
- Published electronically: December 20, 2021
- Additional Notes: The first author was supported by NSF grant DMS-1703708. The second author was supported by NSF grant DMS-1800323. The third author was supported by NSF grant DMS-1855757 and DMS-1945592
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 1725-1743
- MSC (2020): Primary 03E60, 03E02, 03E15, 03E05
- DOI: https://doi.org/10.1090/tran/8573
- MathSciNet review: 4378077