On the connectivity of spaces of three-dimensional domino tilings
HTML articles powered by AMS MathViewer
- by Juliana Freire, Caroline J. Klivans, Pedro H. Milet and Nicolau C. Saldanha PDF
- Trans. Amer. Math. Soc. 375 (2022), 1579-1605 Request permission
Abstract:
We consider domino tilings of three-dimensional cubiculated manifolds with or without boundary, including subsets of Euclidean space and three-dimensional tori. In particular, we are interested in the connected components of the space of tilings of such regions under local moves. Building on the work of the third and fourth authors we allow two possible local moves, the flip and trit. These moves are considered with respect to two topological invariants, the twist and flux.
Our main result proves that, up to refinement,
$\bullet \;$ Two tilings are connected by flips and trits if and only if they have the same flux.
$\bullet \;$ Two tilings are connected by flips alone if and only if they have the same flux and twist.
References
- Vladimir I. Arnold and Boris A. Khesin, Topological methods in hydrodynamics, Applied Mathematical Sciences, vol. 125, Springer, Cham, [2021] ©2021. Second edition [of 1612569]. MR 4268535, DOI 10.1007/978-3-030-74278-2
- Olivier Bodini and Damien Jamet, Tiling a pyramidal polycube with dominoes, Discrete Math. Theor. Comput. Sci. 9 (2007), no. 2, 241–254. MR 2306531
- Mihai Ciucu, An improved upper bound for the $3$-dimensional dimer problem, Duke Math. J. 94 (1998), no. 1, 1–11. MR 1635888, DOI 10.1215/S0012-7094-98-09401-7
- Henry Cohn, Noam Elkies, and James Propp, Local statistics for random domino tilings of the Aztec diamond, Duke Math. J. 85 (1996), no. 1, 117–166. MR 1412441, DOI 10.1215/S0012-7094-96-08506-3
- J. H. Conway and J. C. Lagarias, Tiling with polyominoes and combinatorial group theory, J. Combin. Theory Ser. A 53 (1990), no. 2, 183–208. MR 1041445, DOI 10.1016/0097-3165(90)90057-4
- Guy David and Carlos Tomei, The problem of the calissons, Amer. Math. Monthly 96 (1989), no. 5, 429–431. MR 994034, DOI 10.2307/2325150
- Noam Elkies, Greg Kuperberg, Michael Larsen, and James Propp, Alternating-sign matrices and domino tilings. II, J. Algebraic Combin. 1 (1992), no. 3, 219–234. MR 1194076, DOI 10.1023/A:1022483817303
- Alberto Enciso, Daniel Peralta-Salas, and Francisco Torres de Lizaur, Helicity is the only integral invariant of volume-preserving transformations, Proc. Natl. Acad. Sci. USA 113 (2016), no. 8, 2035–2040. MR 3474089, DOI 10.1073/pnas.1516213113
- Shmuel Friedland and Uri N. Peled, Theory of computation of multidimensional entropy with an application to the monomer-dimer problem, Adv. in Appl. Math. 34 (2005), no. 3, 486–522. MR 2123547, DOI 10.1016/j.aam.2004.08.005
- J. M. Hammersley, Existence theorems and Monte Carlo methods for the monomer-dimer problem, Research Papers in Statistics (Festschrift J. Neyman), John Wiley, London, 1966, pp. 125–146. MR 0211718
- William Jockusch, James Propp, and Peter Shor, Random domino tilings and the arctic circle theorem, arXiv:math/9801068, 1995.
- P.W. Kasteleyn. The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice. Physica, 27(12):1209 – 1225, 1961.
- Richard Kenyon and Andrei Okounkov, Planar dimers and Harnack curves, Duke Math. J. 131 (2006), no. 3, 499–524. MR 2219249, DOI 10.1215/S0012-7094-06-13134-4
- Richard Kenyon, Andrei Okounkov, and Scott Sheffield, Dimers and amoebae, Ann. of Math. (2) 163 (2006), no. 3, 1019–1056. MR 2215138, DOI 10.4007/annals.2006.163.1019
- Boris Khesin, Topological fluid dynamics, Notices Amer. Math. Soc. 52 (2005), no. 1, 9–19. MR 2105567
- Caroline Klivans and Nicolau Saldanha, Domino tilings and flips in dimensions 4 and higher, arXiv:2007.08474, 2020.
- W. B. Raymond Lickorish, An introduction to knot theory, Graduate Texts in Mathematics, vol. 175, Springer-Verlag, New York, 1997. MR 1472978, DOI 10.1007/978-1-4612-0691-0
- Joakim Linde, Cristopher Moore, and Mats G. Nordahl, An $n$-dimensional generalization of the rhombus tiling, Discrete models: combinatorics, computation, and geometry (Paris, 2001) Discrete Math. Theor. Comput. Sci. Proc., AA, Maison Inform. Math. Discrèt. (MIMD), Paris, 2001, pp. 023–042. MR 1888761
- Pedro H Milet and Nicolau C Saldanha, Domino tilings of three-dimensional regions: flips, trits and twists, arXiv:1410.7693.
- Pedro H. Milet and Nicolau C. Saldanha, Flip invariance for domino tilings of three-dimensional regions with two floors, Discrete Comput. Geom. 53 (2015), no. 4, 914–940. MR 3341585, DOI 10.1007/s00454-015-9685-y
- Henry Keith Moffatt, The degree of knottedness of tangled vortex lines, J. Fluid Mech., 35 (1969), no. 1, 117–129.
- Igor Pak and Jed Yang, The complexity of generalized domino tilings, Electron. J. Combin. 20 (2013), no. 4, Paper 12, 23. MR 3139397
- Dana Randall and Gary Yngve, Random three-dimensional tilings of Aztec octahedra and tetrahedra: an extension of domino tilings, Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, CA, 2000) ACM, New York, 2000, pp. 636–645. MR 1755523
- Nicolau C Saldanha. Domino tilings of cylinders: the domino group and connected components under flips. arXiv:1912.12102, 2019.
- Nicolau C. Saldanha, Domino tilings of cylinders: connected components under flips and normal distribution of the twist, Electron. J. Combin. 28 (2021), no. 1, Paper No. 1.28, 23. MR 4245261, DOI 10.37236/9779
- N. C. Saldanha, C. Tomei, M. A. Casarin Jr., and D. Romualdo, Spaces of domino tilings, Discrete Comput. Geom. 14 (1995), no. 2, 207–233. MR 1331927, DOI 10.1007/BF02570703
- William P. Thurston, Conway’s tiling groups, Amer. Math. Monthly 97 (1990), no. 8, 757–773. MR 1072815, DOI 10.2307/2324578
Additional Information
- Juliana Freire
- Affiliation: Departamento de Matemática, PUC-Rio, Rua Marquês de São Vicente, 225, Rio de Janeiro, RJ 22451-900, Brazil
- MR Author ID: 921251
- Email: jufreire@gmail.com
- Caroline J. Klivans
- Affiliation: Division of Applied Mathematics, Brown University, Providence, Rhode Island 02906
- MR Author ID: 754274
- Email: caroline_klivans@brown.edu
- Pedro H. Milet
- Affiliation: Departamento de Matemática, PUC-Rio, Rua Marquês de São Vicente, 225, Rio de Janeiro, RJ 22451-900, Brazil
- Address at time of publication: XP Investimentos, Av. Chedid Jafet, 75, Torre Sul, 30o andar, São Paulo, SP 04551-065, Brazil
- MR Author ID: 1105948
- Email: pedrohmilet@gmail.com
- Nicolau C. Saldanha
- Affiliation: Departamento de Matemática, PUC-Rio, Rua Marquês de São Vicente, 225, Rio de Janeiro, RJ 22451-900, Brazil
- MR Author ID: 319568
- ORCID: 0000-0002-3953-5366
- Email: saldanha@puc-rio.br
- Received by editor(s): July 16, 2017
- Received by editor(s) in revised form: April 29, 2021
- Published electronically: January 12, 2022
- Additional Notes: The authors thank the generous support of a grant from the Brown-Brazil initiative. We also thank the support of CNPq, CAPES and FAPERJ (Brazil)
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 1579-1605
- MSC (2020): Primary 05B45; Secondary 52C20, 52C22, 05C70
- DOI: https://doi.org/10.1090/tran/8532
- MathSciNet review: 4378071