Graded multiplicities in the exterior algebra of the little adjoint module
HTML articles powered by AMS MathViewer
- by Ibukun Ademehin PDF
- Trans. Amer. Math. Soc. 375 (2022), 2341-2363 Request permission
Abstract:
As an application of the double affine Hecke algebra with unequal parameters on Weyl orbits to representation theory of semisimple Lie algebras, we find the graded multiplicities of the trivial module and of the little adjoint module in the exterior algebra of the little adjoint module of a simple Lie algebra $\mathfrak {g}$ with a non-simply laced Dynkin diagram. We prove that in type $B, C$ or $F$ these multiplicities can be expressed in terms of special exponents of positive long roots in the dual root system of $\mathfrak {g}.$References
- John C. Baez, The octonions, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 2, 145–205. MR 1886087, DOI 10.1090/S0273-0979-01-00934-X
- Yuri Bazlov, Graded multiplicities in the exterior algebra, Adv. Math. 158 (2001), no. 2, 129–153. MR 1822681, DOI 10.1006/aima.2000.1969
- Armand Borel, Robert Friedman, and John W. Morgan, Almost commuting elements in compact Lie groups, Mem. Amer. Math. Soc. 157 (2002), no. 747, x+136. MR 1895253, DOI 10.1090/memo/0747
- Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. MR 1890629, DOI 10.1007/978-3-540-89394-3
- Luis J. Boya, Geometric issues in quantum field theory and string theory, Geometric and topological methods for quantum field theory, Cambridge Univ. Press, Cambridge, 2013, pp. 241–273. MR 3098089
- Ivan Cherednik, Double affine Hecke algebras, London Mathematical Society Lecture Note Series, vol. 319, Cambridge University Press, Cambridge, 2005. MR 2133033, DOI 10.1017/CBO9780511546501
- Ivan Cherednik, Double affine Hecke algebras and Macdonald’s conjectures, Ann. of Math. (2) 141 (1995), no. 1, 191–216. MR 1314036, DOI 10.2307/2118632
- Corrado De Concini, Paolo Papi, and Claudio Procesi, The adjoint representation inside the exterior algebra of a simple Lie algebra, Adv. Math. 280 (2015), 21–46. MR 3350211, DOI 10.1016/j.aim.2015.04.011
- Salvatore Dolce, On certain modules of covariants in exterior algebras, Algebr. Represent. Theory 18 (2015), no. 5, 1299–1319. MR 3422471, DOI 10.1007/s10468-015-9541-z
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- R. M. Green, Combinatorics of minuscule representations, Cambridge Tracts in Mathematics, vol. 199, Cambridge University Press, Cambridge, 2013. MR 3025147
- Bertram Kostant, Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the $\rho$-decomposition $C(\mathfrak {g})=\textrm {End}\, V_\rho \otimes C(P)$, and the $\mathfrak {g}$-module structure of $\bigwedge \mathfrak {g}$, Adv. Math. 125 (1997), no. 2, 275–350. MR 1434113, DOI 10.1006/aima.1997.1608
- Gyula Károlyi, Alain Lascoux, and S. Ole Warnaar, Constant term identities and Poincaré polynomials, Trans. Amer. Math. Soc. 367 (2015), no. 10, 6809–6836. MR 3378815, DOI 10.1090/tran/6119
- I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, vol. 157, Cambridge University Press, Cambridge, 2003. MR 1976581, DOI 10.1017/CBO9780511542824
- I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Astérisque Séminaire Bourbaki exp. no (797) tome 237 (1996), 189–207.
- Eckhard Meinrenken, Clifford algebras and Lie theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 58, Springer, Heidelberg, 2013. MR 3052646, DOI 10.1007/978-3-642-36216-3
- Dmitri I. Panyushev, The exterior algebra and “spin” of an orthogonal $\mathfrak {g}$-module, Transform. Groups 6 (2001), no. 4, 371–396. MR 1870053, DOI 10.1007/BF01237253
- John R. Stembridge, The partial order of dominant weights, Adv. Math. 136 (1998), no. 2, 340–364. MR 1626860, DOI 10.1006/aima.1998.1736
- John S. Wilson, Profinite groups, London Mathematical Society Monographs. New Series, vol. 19, The Clarendon Press, Oxford University Press, New York, 1998. MR 1691054
Additional Information
- Ibukun Ademehin
- Affiliation: School of Mathematics, University of Manchester, M13 9PL United Kingdom
- Address at time of publication: 26/27 Alaba Layout, FUTA Road, Akure, Ondo State, 340252 Nigeria
- ORCID: 0000-0001-9436-4419
- Email: ibukun.oghene.math@gmail.com
- Received by editor(s): August 9, 2018
- Received by editor(s) in revised form: April 2, 2021
- Published electronically: January 20, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 2341-2363
- MSC (2020): Primary 17B10
- DOI: https://doi.org/10.1090/tran/8491
- MathSciNet review: 4391720
Dedicated: This paper is dedicated to my parents Mr. and Mrs. F.O. Ademehin, and my Ph.D. supervisor, Dr. Yuri Bazlov.