Ramsey theory and topological dynamics for first order theories
HTML articles powered by AMS MathViewer
- by Krzysztof Krupiński, Junguk Lee and Slavko Moconja PDF
- Trans. Amer. Math. Soc. 375 (2022), 2553-2596 Request permission
Abstract:
We investigate interactions between Ramsey theory, topological dynamics, and model theory. We introduce various Ramsey-like properties for first order theories and characterize them in terms of the appropriate dynamical properties of the theories in question (such as [extreme] amenability of a theory or some properties of the associated Ellis semigroups). Then we relate them to profiniteness and triviality of the Ellis groups of first order theories. In particular, we find various criteria for [pro]finiteness and for triviality of the Ellis group of a given theory from which we obtain wide classes of examples of theories with [pro]finite or trivial Ellis groups. We also find several concrete examples illustrating the lack of implications between some fundamental properties. In the appendix, we give a full computation of the Ellis group of the theory of the random hypergraph with one binary and one 4-ary relation. This example shows that the assumption of NIP in the version of Newelski’s conjecture for amenable theories (proved by Krupiński, Newelski, and Simon [J. Math. Log. 19 (2019), no. 2, 1950012, p. 55]) cannot be dropped.References
- Joseph Auslander, Minimal flows and their extensions, North-Holland Mathematics Studies, vol. 153, North-Holland Publishing Co., Amsterdam, 1988. Notas de Matemática [Mathematical Notes], 122. MR 956049
- Steven Buechler, Anand Pillay, and Frank Wagner, Supersimple theories, J. Amer. Math. Soc. 14 (2001), no. 1, 109–124. MR 1800350, DOI 10.1090/S0894-0347-00-00350-7
- P. J. Cameron, The random graph. In: The Mathematics of Paul Erdős II, Springer, New York, 353–378, 2013.
- E. Casanovas, D. Lascar, A. Pillay, and M. Ziegler, Galois groups of first order theories, J. Math. Log. 1 (2001), no. 2, 305–319. MR 1864739, DOI 10.1142/S0219061301000119
- J. Gismatullin, G. Jagiella, and K. Krupiński, Bohr compactifications of groups and rings, In preparation, 2019.
- Jakub Gismatullin and Ludomir Newelski, $G$-compactness and groups, Arch. Math. Logic 47 (2008), no. 5, 479–501. MR 2425541, DOI 10.1007/s00153-008-0092-4
- Shmuel Glasner, Proximal flows, Lecture Notes in Mathematics, Vol. 517, Springer-Verlag, Berlin-New York, 1976. MR 0474243
- Eli Glasner, Ergodic theory via joinings, Mathematical Surveys and Monographs, vol. 101, American Mathematical Society, Providence, RI, 2003. MR 1958753, DOI 10.1090/surv/101
- R. L. Graham, K. Leeb, and B. L. Rothschild, Ramsey’s theorem for a class of categories, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 119–120. MR 306009, DOI 10.1073/pnas.69.1.119
- R. L. Graham and B. L. Rothschild, Ramsey’s theorem for $n$-parameter sets, Trans. Amer. Math. Soc. 159 (1971), 257–292. MR 284352, DOI 10.1090/S0002-9947-1971-0284352-8
- E. Hrushovski, Definability patterns and their symmetries, arXiv:1911.01129, 2019.
- E. Hrushovski, K. Krupiński, and A. Pillay, On first order amenability, arXiv2004.08306v2, 2021.
- Jakub Jasiński, Claude Laflamme, Lionel Nguyen Van Thé, and Robert Woodrow, Ramsey precompact expansions of homogeneous directed graphs, Electron. J. Combin. 21 (2014), no. 4, Paper 4.42, 31. MR 3292279, DOI 10.37236/3840
- A. S. Kechris, V. G. Pestov, and S. Todorcevic, Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups, Geom. Funct. Anal. 15 (2005), no. 1, 106–189. MR 2140630, DOI 10.1007/s00039-005-0503-1
- Krzysztof Krupiński, Ludomir Newelski, and Pierre Simon, Boundedness and absoluteness of some dynamical invariants in model theory, J. Math. Log. 19 (2019), no. 2, 1950012, 55. MR 4014892, DOI 10.1142/S0219061319500120
- Krzysztof Krupiński and Anand Pillay, Generalised Bohr compactification and model-theoretic connected components, Math. Proc. Cambridge Philos. Soc. 163 (2017), no. 2, 219–249. MR 3682628, DOI 10.1017/S0305004116000967
- K. Krupiński and A. Pillay, On the topological dynamics of automorphism groups; a model-theoretic perspective, arXiv:1909.13285, 2019.
- Krzysztof Krupiński, Anand Pillay, and Tomasz Rzepecki, Topological dynamics and the complexity of strong types, Israel J. Math. 228 (2018), no. 2, 863–932. MR 3874863, DOI 10.1007/s11856-018-1780-3
- Krzysztof Krupiński and Tomasz Rzepecki, Galois groups as quotients of Polish groups, J. Math. Log. 20 (2020), no. 3, 2050018, 48. MR 4177622, DOI 10.1142/S021906132050018X
- Justin Tatch Moore, Amenability and Ramsey theory, Fund. Math. 220 (2013), no. 3, 263–280. MR 3040674, DOI 10.4064/fm220-3-6
- Jaroslav Ne et il and Vojtěch Rödl, Ramsey classes of set systems, J. Combin. Theory Ser. A 34 (1983), no. 2, 183–201. MR 692827, DOI 10.1016/0097-3165(83)90055-9
- Ludomir Newelski, Topological dynamics of definable group actions, J. Symbolic Logic 74 (2009), no. 1, 50–72. MR 2499420, DOI 10.2178/jsl/1231082302
- L. Nguyen Van Thé, More on the Kechris-Pestov-Todorcevic correspondence: precompact expansions, Fund. Math. 222 (2013), no. 1, 19–47. MR 3080786, DOI 10.4064/fm222-1-2
- Lionel Nguyen Van Thé, Fixed points in compactifications and combinatorial counterparts, Ann. H. Lebesgue 2 (2019), 149–185 (English, with English and French summaries). MR 3978387, DOI 10.5802/ahl.16
- T. Rzepecki, Bounded invariant equivalence relations, Ph.D. Thesis, Wrocław, arXiv:1810.05113, 2018.
- T. S. Salles, Extreme amenability of topological groups, Master’s Thesis, Bonn, 2011.
- Miodrag Sokić, Ramsey properties of finite posets, Order 29 (2012), no. 1, 1–30. MR 2948746, DOI 10.1007/s11083-011-9195-3
- Miodrag Sokić, Ramsey property, ultrametric spaces, finite posets, and universal minimal flows, Israel J. Math. 194 (2013), no. 2, 609–640. MR 3047085, DOI 10.1007/s11856-012-0101-5
- Sławomir Turek, Minimal actions on Cantor cubes, Bull. Polish Acad. Sci. Math. 51 (2003), no. 2, 129–138. MR 1990802
- Martin Ziegler, Introduction to the Lascar group, Tits buildings and the model theory of groups (Würzburg, 2000) London Math. Soc. Lecture Note Ser., vol. 291, Cambridge Univ. Press, Cambridge, 2002, pp. 279–298. MR 2018391, DOI 10.1017/CBO9780511549786.013
- Andy Zucker, Topological dynamics of automorphism groups, ultrafilter combinatorics, and the generic point problem, Trans. Amer. Math. Soc. 368 (2016), no. 9, 6715–6740. MR 3461049, DOI 10.1090/tran6685
Additional Information
- Krzysztof Krupiński
- Affiliation: Uniwersytet Wrocławski, Instytut Matematyczny, Plac Grunwaldzki 2/4, 50-384 Wrocław, Poland
- ORCID: 0000-0002-2243-4411
- Email: kkrup@math.uni.wroc.pl
- Junguk Lee
- Affiliation: Department of Mathematical Sciences, KAIST, 291 Daehak-ro Yuseong-gu, 34141 Daejeon, South Korea
- MR Author ID: 1099787
- ORCID: 0000-0002-2150-6145
- Email: ljwhayo@kaist.ac.kr
- Slavko Moconja
- Affiliation: University of Belgrade, Faculty of Mathematics, Studentski trg 16, 11000 Belgrade, Serbia
- MR Author ID: 892819
- ORCID: 0000-0003-4095-8830
- Email: slavko@matf.bg.ac.rs
- Received by editor(s): February 1, 2020
- Received by editor(s) in revised form: August 6, 2021
- Published electronically: February 4, 2022
- Additional Notes: ORCID (K. Krupiński): 0000-0002-2243-4411
ORCID (J. Lee): 0000-0002-2150-6145
All authors were supported by National Science Center, Poland, grant 2016/22/E/ST1/00450. The first author was also supported by National Science Center, Poland, grant 2018/31/B/ST1/00357. The third author was also supported by the Ministry of Education, Science and Technological Development of Serbia. - © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 2553-2596
- MSC (2020): Primary 03C45, 05D10, 54H11, 20E18
- DOI: https://doi.org/10.1090/tran/8594
- MathSciNet review: 4391727