Random quantum graphs
HTML articles powered by AMS MathViewer
- by Alexandru Chirvasitu and Mateusz Wasilewski PDF
- Trans. Amer. Math. Soc. 375 (2022), 3061-3087 Request permission
Abstract:
We prove a number of results to the effect that generic quantum graphs (defined via operator systems as in the work of Duan-Severini-Winter / Weaver) have few symmetries: for a Zariski-dense open set of tuples $(X_1,\cdots ,X_d)$ of traceless self-adjoint operators in the $n\times n$ matrix algebra the corresponding operator system has trivial automorphism group, in the largest possible range for the parameters: $2\le d\le n^2-3$. Moreover, the automorphism group is generically abelian in the larger parameter range $1\le d\le n^2-2$. This then implies that for those respective parameters the corresponding random-quantum-graph model built on the GUE ensembles of $X_i$’s (mimicking the Erdős-Rényi $G(n,p)$ model) has trivial/abelian automorphism group almost surely.References
- Michèle Audin, The topology of torus actions on symplectic manifolds, Progress in Mathematics, vol. 93, Birkhäuser Verlag, Basel, 1991. Translated from the French by the author. MR 1106194, DOI 10.1007/978-3-0348-7221-8
- Teodor Banica, Quantum automorphism groups of homogeneous graphs, J. Funct. Anal. 224 (2005), no. 2, 243–280. MR 2146039, DOI 10.1016/j.jfa.2004.11.002
- Michael Brannan, Alexandru Chirvasitu, Kari Eifler, Samuel Harris, Vern Paulsen, Xiaoyu Su, and Mateusz Wasilewski, Bigalois extensions and the graph isomorphism game, Comm. Math. Phys. 375 (2020), no. 3, 1777–1809. MR 4091496, DOI 10.1007/s00220-019-03563-9
- Maxime Bergeron, Complex reductive algebraic groups, http://www.math.uchicago.edu/~mbergeron/ComplexReductive.pdf.
- Julien Bichon, Quantum automorphism groups of finite graphs, Proc. Amer. Math. Soc. 131 (2003), no. 3, 665–673. MR 1937403, DOI 10.1090/S0002-9939-02-06798-9
- David Birkes, Orbits of linear algebraic groups, Ann. of Math. (2) 93 (1971), 459–475. MR 296077, DOI 10.2307/1970884
- Béla Bollobás, Distinguishing vertices of random graphs, Graph theory (Cambridge, 1981) North-Holland Math. Stud., vol. 62, North-Holland, Amsterdam-New York, 1982, pp. 33–49. MR 671901
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- Runyao Duan, Simone Severini, and Andreas Winter, Zero-error communication via quantum channels, noncommutative graphs, and a quantum Lovász number, IEEE Trans. Inform. Theory 59 (2013), no. 2, 1164–1174. MR 3015725, DOI 10.1109/TIT.2012.2221677
- P. Erdős and A. Rényi, On random graphs. I, Publ. Math. Debrecen 6 (1959), 290–297. MR 120167
- P. Erdős and A. Rényi, Asymmetric graphs, Acta Math. Acad. Sci. Hungar. 14 (1963), 295–315. MR 156334, DOI 10.1007/BF01895716
- C. D. Godsil and B. D. McKay, Constructing cospectral graphs, Aequationes Math. 25 (1982), no. 2-3, 257–268. MR 730486, DOI 10.1007/BF02189621
- Masamichi Hamana, Injective envelopes of operator systems, Publ. Res. Inst. Math. Sci. 15 (1979), no. 3, 773–785. MR 566081, DOI 10.2977/prims/1195187876
- Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1992. A first course. MR 1182558, DOI 10.1007/978-1-4757-2189-8
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773, DOI 10.1007/978-1-4684-9443-3
- Jeong Han Kim, Benny Sudakov, and Van H. Vu, On the asymmetry of random regular graphs and random graphs, Random Structures Algorithms 21 (2002), no. 3-4, 216–224. Random structures and algorithms (Poznan, 2001). MR 1945368, DOI 10.1002/rsa.10054
- Greg Kuperberg and Nik Weaver, A von Neumann algebra approach to quantum metrics, Mem. Amer. Math. Soc. 215 (2012), no. 1010, v, 1–80. MR 2908248, DOI 10.1090/S0065-9266-2011-00637-4
- Martino Lupini, Laura Mančinska, and David E. Roberson, Nonlocal games and quantum permutation groups, J. Funct. Anal. 279 (2020), no. 5, 108592, 44. MR 4097284, DOI 10.1016/j.jfa.2020.108592
- Domingo Luna, Slices étales, Sur les groupes algébriques, Bull. Soc. Math. France, Paris, Mémoire 33, Soc. Math. France, Paris, 1973, pp. 81–105 (French). MR 0342523, DOI 10.24033/msmf.110
- Yozô Matsushima, Espaces homogènes de Stein des groupes de Lie complexes, Nagoya Math. J. 16 (1960), 205–218 (French). MR 109854, DOI 10.1017/S0027763000007662
- Benjamin Musto, David Reutter, and Dominic Verdon, A compositional approach to quantum functions, J. Math. Phys. 59 (2018), no. 8, 081706, 42. MR 3849575, DOI 10.1063/1.5020566
- Carlos M. Ortiz and Vern I. Paulsen, Lovász theta type norms and operator systems, Linear Algebra Appl. 477 (2015), 128–147. MR 3337337, DOI 10.1016/j.laa.2015.03.022
- Sean O’Rourke, Van Vu, and Ke Wang, Eigenvectors of random matrices: a survey, J. Combin. Theory Ser. A 144 (2016), 361–442. MR 3534074, DOI 10.1016/j.jcta.2016.06.008
- R. W. Richardson Jr., Principal orbit types for algebraic transformation spaces in characteristic zero, Invent. Math. 16 (1972), 6–14. MR 294336, DOI 10.1007/BF01391211
- Terence Tao, Topics in random matrix theory, Graduate Studies in Mathematics, vol. 132, American Mathematical Society, Providence, RI, 2012. MR 2906465, DOI 10.1090/gsm/132
- Terence Tao and Van Vu, Random matrices: universality of local eigenvalue statistics, Acta Math. 206 (2011), no. 1, 127–204. MR 2784665, DOI 10.1007/s11511-011-0061-3
- Terence Tao and Van Vu, Random matrices have simple spectrum, Combinatorica 37 (2017), no. 3, 539–553. MR 3666791, DOI 10.1007/s00493-016-3363-4
- Shuzhou Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), no. 1, 195–211. MR 1637425, DOI 10.1007/s002200050385
- Nik Weaver, Quantum relations, Mem. Amer. Math. Soc. 215 (2012), no. 1010, v–vi, 81–140. MR 2908249
Additional Information
- Alexandru Chirvasitu
- Affiliation: Department of Mathematics, University at Buffalo, Buffalo, New York 14260-2900
- MR Author ID: 868724
- Email: achirvas@buffalo.edu
- Mateusz Wasilewski
- Affiliation: Department of Mathematics – Section of Analysis, KU Leuven, Leuven, Belgium
- Address at time of publication: Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland
- MR Author ID: 1146862
- ORCID: 0000-0002-3952-777X
- Email: mwasilewski@impan.pl
- Received by editor(s): December 19, 2020
- Received by editor(s) in revised form: March 29, 2021, and May 24, 2021
- Published electronically: February 9, 2022
- Additional Notes: The first author is grateful for funding through NSF grant DMS-2001128. The second author was supported by the Research Foundation—Flanders (FWO) through a Postdoctoral Fellowship and by long term structural funding—Methusalem grant of the Flemish Government
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 3061-3087
- MSC (2020): Primary 60B20, 05C80, 20G20, 20B25, 22E45, 15A30
- DOI: https://doi.org/10.1090/tran/8584
- MathSciNet review: 4402656