On geometrically finite degenerations II: convergence and divergence
HTML articles powered by AMS MathViewer
- by Yusheng Luo PDF
- Trans. Amer. Math. Soc. 375 (2022), 3469-3527 Request permission
Abstract:
In this paper, we study quasi post-critically finite degenerations for rational maps. We construct limits for such degenerations as geometrically finite rational maps on a finite tree of Riemann spheres. We prove the boundedness for such degenerations of hyperbolic rational maps with Sierpinski carpet Julia set and give criteria for the convergence for quasi-Blaschke products $\mathcal {QB}_d$, making progress towards the analogues of Thurston’s compactness theorem for acylindrical $3$-manifold and the double limit theorem for quasi-Fuchsian groups in complex dynamics. In the appendix, we apply such convergence results to show the existence of certain polynomial matings.References
- Matthieu Arfeux, Dynamics on trees of spheres, J. Lond. Math. Soc. (2) 95 (2017), no. 1, 177–202. MR 3653089, DOI 10.1112/jlms.12016
- Laurent Bartholdi and Dzmitry Dudko, Algorithmic aspects of branched coverings IV/V. Expanding maps, Trans. Amer. Math. Soc. 370 (2018), no. 11, 7679–7714. MR 3852445, DOI 10.1090/tran/7199
- Laurent Bartholdi and Dzmitry Dudko, Algorithmic aspects of branched coverings II/V: sphere bisets and decidability of Thurston equivalence, Invent. Math. 223 (2021), no. 3, 895–994. MR 4213769, DOI 10.1007/s00222-020-00995-2
- Paul Blanchard, Robert L. Devaney, and Linda Keen, The dynamics of complex polynomials and automorphisms of the shift, Invent. Math. 104 (1991), no. 3, 545–580. MR 1106749, DOI 10.1007/BF01245090
- Xavier Buff, Adam L. Epstein, Sarah Koch, Daniel Meyer, Kevin Pilgrim, Mary Rees, and Tan Lei, Questions about polynomial matings, Ann. Fac. Sci. Toulouse Math. (6) 21 (2012), no. 5, 1149–1176 (English, with English and French summaries). MR 3088270, DOI 10.5802/afst.1365
- Mladen Bestvina, Degenerations of the hyperbolic space, Duke Math. J. 56 (1988), no. 1, 143–161. MR 932860, DOI 10.1215/S0012-7094-88-05607-4
- Bodil Branner and John H. Hubbard, The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math. 160 (1988), no. 3-4, 143–206. MR 945011, DOI 10.1007/BF02392275
- Guizhen Cui and Lei Tan, Hyperbolic-parabolic deformations of rational maps, Sci. China Math. 61 (2018), no. 12, 2157–2220. MR 3881954, DOI 10.1007/s11425-018-9426-4
- Laura DeMarco, Iteration at the boundary of the space of rational maps, Duke Math. J. 130 (2005), no. 1, 169–197. MR 2176550, DOI 10.1215/S0012-7094-05-13015-0
- Laura De Marco and Xander Faber, Degenerations of complex dynamical systems, Forum Math. Sigma 2 (2014), Paper No. e6, 36. MR 3264250, DOI 10.1017/fms.2014.8
- A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes. Partie I, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 84, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984 (French). MR 762431
- Caroline Davis, Jasmine Powell, Rebecca R. Winarski, and Jonguk Yang, Elastic graphs for main molecule matings, arXiv:2010.11382, 2020.
- Adam Lawrence Epstein, Bounded hyperbolic components of quadratic rational maps, Ergodic Theory Dynam. Systems 20 (2000), no. 3, 727–748. MR 1764925, DOI 10.1017/S0143385700000390
- Peter Haïssinsky, Déformation $J$-équivalente de polynômes géometriquement finis, Fund. Math. 163 (2000), no. 2, 131–141 (French, with English summary). MR 1752100, DOI 10.4064/fm-163-2-131-141
- John H. Hubbard and Sarah Koch, An analytic construction of the Deligne-Mumford compactification of the moduli space of curves, J. Differential Geom. 98 (2014), no. 2, 261–313. MR 3263519
- Peter Haïssinsky and Lei Tan, Convergence of pinching deformations and matings of geometrically finite polynomials, Fund. Math. 181 (2004), no. 2, 143–188. MR 2070668, DOI 10.4064/fm181-2-4
- Jan Kiwi, Rescaling limits of complex rational maps, Duke Math. J. 164 (2015), no. 7, 1437–1470. MR 3347319, DOI 10.1215/00127094-2916431
- Sarah Koch, Teichmüller theory and critically finite endomorphisms, Adv. Math. 248 (2013), 573–617. MR 3107522, DOI 10.1016/j.aim.2013.08.019
- Yusheng Luo, Limits of rational maps, $\Bbb {R}$-trees and barycentric extension, Adv. Math. 393 (2021), Paper No. 108075, 46. MR 4339528, DOI 10.1016/j.aim.2021.108075
- Yusheng Luo. Trees, length spectra for rational maps via barycentric extensions and Berkovich spaces. Duke Math. J., to appear.
- Yusheng Luo, On hyperbolic rational maps with finitely connected Fatou sets, J. Lond. Math. Soc. (2), To appear.
- Yusheng Luo, On geometrically finite degenerations I: boundaries of main hyperbolic components, arXiv:2101.07880, 2021.
- Peter M. Makienko, Unbounded components in parameter space of rational maps, Conform. Geom. Dyn. 4 (2000), 1–21. MR 1741344, DOI 10.1090/S1088-4173-00-00044-8
- Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR 1312365
- Curtis T. McMullen, The classification of conformal dynamical systems, Current developments in mathematics, 1995 (Cambridge, MA), Int. Press, Cambridge, MA, 1994, pp. 323–360. MR 1474980
- Curtis T. McMullen, Ribbon $\Bbb R$-trees and holomorphic dynamics on the unit disk, J. Topol. 2 (2009), no. 1, 23–76. MR 2499437, DOI 10.1112/jtopol/jtn032
- John Milnor, Geometry and dynamics of quadratic rational maps, Experiment. Math. 2 (1993), no. 1, 37–83. With an appendix by the author and Lei Tan. MR 1246482, DOI 10.1080/10586458.1993.10504267
- John Milnor, Hyperbolic components, Conformal dynamics and hyperbolic geometry, Contemp. Math., vol. 573, Amer. Math. Soc., Providence, RI, 2012, pp. 183–232. With an appendix by A. Poirier. MR 2964079, DOI 10.1090/conm/573/11428
- John W. Morgan and Peter B. Shalen, Valuations, trees, and degenerations of hyperbolic structures. I, Ann. of Math. (2) 120 (1984), no. 3, 401–476. MR 769158, DOI 10.2307/1971082
- Hongming Nie and Kevin M. Pilgrim, Bounded hyperbolic components of bicritical rational maps, arXiv:1903.08873, 2019.
- Hongming Nie and Kevin M. Pilgrim, Boundedness of hyperbolic components of Newton maps, Israel J. Math. 238 (2020), no. 2, 837–869. MR 4145819, DOI 10.1007/s11856-020-2044-6
- Insung Park, Levy and Thurston obstructions of finite subdivision rules, arXiv:2012.00243, 2021.
- Frédéric Paulin, Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math. 94 (1988), no. 1, 53–80 (French). MR 958589, DOI 10.1007/BF01394344
- Kevin M. Pilgrim, Combinations of complex dynamical systems, Lecture Notes in Mathematics, vol. 1827, Springer-Verlag, Berlin, 2003. MR 2020454, DOI 10.1007/b14147
- Carsten Lunde Petersen and Daniel Meyer, On the notions of mating, Ann. Fac. Sci. Toulouse Math. (6) 21 (2012), no. 5, 839–876 (English, with English and French summaries). MR 3088260, DOI 10.5802/afst.1355
- Kevin M. Pilgrim and Tan Lei, Combining rational maps and controlling obstructions, Ergodic Theory Dynam. Systems 18 (1998), no. 1, 221–245. MR 1609463, DOI 10.1017/S0143385798100329
- Kevin M. Pilgrim and Tan Lei, Spinning deformations of rational maps, Conform. Geom. Dyn. 8 (2004), 52–86. MR 2060378, DOI 10.1090/S1088-4173-04-00101-8
- M. Rees, Components of degree two hyperbolic rational maps, Invent. Math. 100 (1990), no. 2, 357–382. MR 1047139, DOI 10.1007/BF01231191
- Mary Rees, A partial description of parameter space of rational maps of degree two. I, Acta Math. 168 (1992), no. 1-2, 11–87. MR 1149864, DOI 10.1007/BF02392976
- Mary Rees, A partial description of the parameter space of rational maps of degree two. II, Proc. London Math. Soc. (3) 70 (1995), no. 3, 644–690. MR 1317518, DOI 10.1112/plms/s3-70.3.644
- Nikita Selinger, Thurston’s pullback map on the augmented Teichmüller space and applications, Invent. Math. 189 (2012), no. 1, 111–142. MR 2929084, DOI 10.1007/s00222-011-0362-3
- Mitsuhiro Shishikura, On a theorem of M. Rees for matings of polynomials, The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser., vol. 274, Cambridge Univ. Press, Cambridge, 2000, pp. 289–305. MR 1765095
- Lei Tan, Matings of quadratic polynomials, Ergodic Theory Dynam. Systems 12 (1992), no. 3, 589–620. MR 1182664, DOI 10.1017/S0143385700006957
- Lei Tan, On pinching deformations of rational maps, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 3, 353–370 (English, with English and French summaries). MR 1914001, DOI 10.1016/S0012-9593(02)01092-3
- William P. Thurston, Hyungryul Baik, Gao Yan, John H. Hubbard, Kathryn A. Lindsey, Lei Tan, and Dylan P. Thurston, Degree-$d$-invariant laminations, What’s next?—the mathematical legacy of William P. Thurston, Ann. of Math. Stud., vol. 205, Princeton Univ. Press, Princeton, NJ, 2020, pp. 259–325. MR 4205644, DOI 10.2307/j.ctvthhdvv.15
- William P. Thurston, Hyperbolic structures on $3$-manifolds. I. Deformation of acylindrical manifolds, Ann. of Math. (2) 124 (1986), no. 2, 203–246. MR 855294, DOI 10.2307/1971277
- William Thurston, Hyperbolic structures on 3-manifolds, II: surface groups and 3-manifolds which fiber over the circle, arXiv:9801045, 1998.
- Dylan P. Thurston, A positive characterization of rational maps, Ann. of Math. (2) 192 (2020), no. 1, 1–46. MR 4125449, DOI 10.4007/annals.2020.192.1.1
- Lei Tan and Yongcheng Yin, Local connectivity of the Julia set for geometrically finite rational maps, Sci. China Ser. A 39 (1996), no. 1, 39–47. MR 1397233
- Xiaoguang Wang and Yongcheng Yin, Global topology of hyperbolic components: Cantor circle case, Proc. Lond. Math. Soc. (3) 115 (2017), no. 4, 897–923. MR 3716945, DOI 10.1112/plms.12058
- Michael Yampolsky and Saeed Zakeri, Mating Siegel quadratic polynomials, J. Amer. Math. Soc. 14 (2001), no. 1, 25–78. MR 1800348, DOI 10.1090/S0894-0347-00-00348-9
Additional Information
- Yusheng Luo
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- MR Author ID: 1333196
- Email: yusheng.s.luo@gmail.com
- Received by editor(s): July 13, 2021
- Received by editor(s) in revised form: October 24, 2021
- Published electronically: February 4, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 3469-3527
- MSC (2020): Primary 37F10, 37F34, 37F15
- DOI: https://doi.org/10.1090/tran/8597
- MathSciNet review: 4402668