Logarithmic concavity of Schur and related polynomials
HTML articles powered by AMS MathViewer
- by June Huh, Jacob P. Matherne, Karola Mészáros and Avery St. Dizier PDF
- Trans. Amer. Math. Soc. 375 (2022), 4411-4427 Request permission
Abstract:
We show that normalized Schur polynomials are strongly log-concave. As a consequence, we obtain Okounkov’s log-concavity conjecture for Littlewood–Richardson coefficients in the special case of Kostka numbers.References
- Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant, Log-concave polynomials, entropy, and a deterministic approximation algorithm for counting bases of matroids, 59th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2018, IEEE Computer Soc., Los Alamitos, CA, 2018, pp. 35–46. MR 3899575, DOI 10.1109/FOCS.2018.00013
- Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant, Log-concave polynomials II: High-dimensional walks and an FPRAS for counting bases of a matroid, STOC’19—Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, ACM, New York, 2019, pp. 1–12. MR 4003314, DOI 10.1145/3313276.3316385
- Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant, Log-Concave polynomials III: Mason’s ultra-log-concavity conjecture for independent sets of matroids (2018), available at arXiv:1811.01600.
- Welleda Baldoni and Michèle Vergne, Kostant partitions functions and flow polytopes, Transform. Groups 13 (2008), no. 3-4, 447–469. MR 2452600, DOI 10.1007/s00031-008-9019-8
- Spencer Backman, Christopher Eur, and Connor Simpson, Simplicial generation of Chow rings of matroids, Sém. Lothar. Combin. 84B (2020), Art. 52, 11. MR 4138680
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Schubert cells, and the cohomology of the spaces $G/P$, Uspehi Mat. Nauk 28 (1973), no. 3(171), 3–26 (Russian). MR 0429933
- Sara Billey, Victor Guillemin, and Etienne Rassart, A vector partition function for the multiplicities of $\mathfrak {sl}_k\Bbb C$, J. Algebra 278 (2004), no. 1, 251–293. MR 2068078, DOI 10.1016/j.jalgebra.2003.12.005
- Petter Brändén and June Huh, Hodge-Riemann relations for Potts model partition functions, arXiv:1811.01696 (2018).
- Petter Brändén and June Huh, Lorentzian polynomials, Ann. of Math. (2) 192 (2020), no. 3, 821–891. MR 4172622, DOI 10.4007/annals.2020.192.3.4
- Augustin Louis Cauchy, Œuvres complètes. Series 2. Volume 5, Cambridge Library Collection, Cambridge University Press, Cambridge, 2009 (French). Reprint of the 1903 original. MR 2866381
- Calin Chindris, Harm Derksen, and Jerzy Weyman, Counterexamples to Okounkov’s log-concavity conjecture, Compos. Math. 143 (2007), no. 6, 1545–1557. MR 2371381, DOI 10.1112/S0010437X07003090
- Michel Demazure, Une nouvelle formule des caractères, Bull. Sci. Math. (2) 98 (1974), no. 3, 163–172. MR 430001
- Laura Escobar and Alexander Yong, Newton polytopes and symmetric Grothendieck polynomials, C. R. Math. Acad. Sci. Paris 355 (2017), no. 8, 831–834 (English, with English and French summaries). MR 3693501, DOI 10.1016/j.crma.2017.07.003
- Christopher Eur and June Huh, Logarithmic concavity for morphisms of matroids, Adv. Math. 367 (2020), 107094, 19. MR 4078485, DOI 10.1016/j.aim.2020.107094
- Neil J. Y. Fan and Peter L. Guo, Upper bounds of Schubert polynomials, arXiv:1909.07206 (2019).
- Alex Fink, Karola Mészáros, and Avery St. Dizier, Schubert polynomials as integer point transforms of generalized permutahedra, Adv. Math. 332 (2018), 465–475. MR 3810259, DOI 10.1016/j.aim.2018.05.028
- Alex Fink, Karola Mészáros, and Avery St. Dizier, Zero-one Schubert polynomials, Math. Z. 297 (2021), no. 3-4, 1023–1042. MR 4229590, DOI 10.1007/s00209-020-02544-2
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- William Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J. 65 (1992), no. 3, 381–420. MR 1154177, DOI 10.1215/S0012-7094-92-06516-1
- William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. MR 1464693
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- William Graham, Logarithmic convexity of push-forward measures, Invent. Math. 123 (1996), no. 2, 315–322. MR 1374203, DOI 10.1007/s002220050029
- Leonid Gurvits, On multivariate Newton-like inequalities, Advances in combinatorial mathematics, Springer, Berlin, 2009, pp. 61–78. MR 2683227, DOI 10.1007/978-3-642-03562-3_{4}
- G. J. Heckman, Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups, Invent. Math. 67 (1982), no. 2, 333–356. MR 665160, DOI 10.1007/BF01393821
- James E. Humphreys, Representations of semisimple Lie algebras in the BGG category $\scr {O}$, Graduate Studies in Mathematics, vol. 94, American Mathematical Society, Providence, RI, 2008. MR 2428237, DOI 10.1090/gsm/094
- Yael Karshon, Example of a non-log-concave Duistermaat-Heckman measure, Math. Res. Lett. 3 (1996), no. 4, 537–540. MR 1406018, DOI 10.4310/MRL.1996.v3.n4.a11
- Anatol N. Kirillov, An invitation to the generalized saturation conjecture, Publ. Res. Inst. Math. Sci. 40 (2004), no. 4, 1147–1239. MR 2105706, DOI 10.2977/prims/1145475445
- Allen Knutson and Ezra Miller, Gröbner geometry of Schubert polynomials, Ann. of Math. (2) 161 (2005), no. 3, 1245–1318. MR 2180402, DOI 10.4007/annals.2005.161.1245
- C. Kostka, Ueber den Zusammenhang zwischen einigen Formen von symmetrischen Functionen, J. Reine Angew. Math. 93 (1882), 89–123 (German). MR 1579917, DOI 10.1515/crll.1882.93.89
- Witold Kraśkiewicz and Piotr Pragacz, Foncteurs de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), no. 9, 209–211 (French, with English summary). MR 883476
- Thomas Lam, Alexander Postnikov, and Pavlo Pylyavskyy, Schur positivity and Schur log-concavity, Amer. J. Math. 129 (2007), no. 6, 1611–1622. MR 2369890, DOI 10.1353/ajm.2007.0045
- Alain Lascoux and Marcel-Paul Schützenberger, Symmetry and flag manifolds, Invariant theory (Montecatini, 1982) Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 118–144. MR 718129, DOI 10.1007/BFb0063238
- Alain Lascoux and Marcel-Paul Schützenberger, Keys & standard bases, Invariant theory and tableaux (Minneapolis, MN, 1988) IMA Vol. Math. Appl., vol. 19, Springer, New York, 1990, pp. 125–144. MR 1035493
- Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471, DOI 10.1007/978-3-642-18808-4
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015. With contribution by A. V. Zelevinsky and a foreword by Richard Stanley; Reprint of the 2008 paperback edition [ MR1354144]. MR 3443860
- Peter Magyar, Schubert polynomials and Bott-Samelson varieties, Comment. Math. Helv. 73 (1998), no. 4, 603–636. MR 1639896, DOI 10.1007/s000140050071
- Laurent Manivel, Symmetric functions, Schubert polynomials and degeneracy loci, SMF/AMS Texts and Monographs, vol. 6, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2001. Translated from the 1998 French original by John R. Swallow; Cours Spécialisés [Specialized Courses], 3. MR 1852463
- Karola Mészáros and Avery St. Dizier, From generalized permutahedra to Grothendieck polynomials via flow polytopes, Algebr. Comb. 3 (2020), no. 5, 1197–1229. MR 4166815, DOI 10.5802/alco.136
- Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. MR 2110098
- Cara Monical, Neriman Tokcan, and Alexander Yong, Newton polytopes in algebraic combinatorics, Selecta Math. (N.S.) 25 (2019), no. 5, Paper No. 66, 37. MR 4021852, DOI 10.1007/s00029-019-0513-8
- Kazuo Murota, Discrete convex analysis, SIAM Monographs on Discrete Mathematics and Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003. MR 1997998, DOI 10.1137/1.9780898718508
- Andrei Okounkov, Why would multiplicities be log-concave?, The orbit method in geometry and physics (Marseille, 2000) Progr. Math., vol. 213, Birkhäuser Boston, Boston, MA, 2003, pp. 329–347. MR 1995384
- James Oxley, Matroid theory, 2nd ed., Oxford Graduate Texts in Mathematics, vol. 21, Oxford University Press, Oxford, 2011. MR 2849819, DOI 10.1093/acprof:oso/9780198566946.001.0001
- Alexander Postnikov, Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN 6 (2009), 1026–1106. MR 2487491, DOI 10.1093/imrn/rnn153
- Alexander Postnikov and Richard P. Stanley, Chains in the Bruhat order, J. Algebraic Combin. 29 (2009), no. 2, 133–174. MR 2475632, DOI 10.1007/s10801-008-0125-4
- Victor Reiner and Mark Shimozono, Key polynomials and a flagged Littlewood-Richardson rule, J. Combin. Theory Ser. A 70 (1995), no. 1, 107–143. MR 1324004, DOI 10.1016/0097-3165(95)90083-7
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183
- Issai Schur, Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen, Dieterich, Berlin; Göttingen (1901).
- David G. Wagner, Multivariate stable polynomials: theory and applications, Bull. Amer. Math. Soc. (N.S.) 48 (2011), no. 1, 53–84. MR 2738906, DOI 10.1090/S0273-0979-2010-01321-5
- Neil White (ed.), Theory of matroids, Encyclopedia of Mathematics and its Applications, vol. 26, Cambridge University Press, Cambridge, 1986. MR 849389, DOI 10.1017/CBO9780511629563
Additional Information
- June Huh
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey; and Korea Institute for Advanced Study, Seoul, Korea
- MR Author ID: 974745
- Email: huh@princeton.edu
- Jacob P. Matherne
- Affiliation: Mathematical Institute, University of Bonn, Bonn, Germany; and Max Planck Institute for Mathematics, Bonn, Germany
- MR Author ID: 1118554
- ORCID: 0000-0002-6187-9771
- Email: jacobm@math.uni-bonn.de
- Karola Mészáros
- Affiliation: Department of Mathematics, Cornell University, Ithaca, New York
- MR Author ID: 823389
- Email: karola@math.cornell.edu
- Avery St. Dizier
- Affiliation: Department of Mathematics, University of Illinois at Urbana–Champaign, Urbana, Illinois
- MR Author ID: 1165589
- ORCID: 0000-0002-5028-6209
- Email: stdizie2@illinois.edu
- Received by editor(s): September 19, 2021
- Received by editor(s) in revised form: November 9, 2021
- Published electronically: March 16, 2022
- Additional Notes: The first author received support from NSF Grant DMS-1638352 and the Ellentuck Fund. The second author received support from NSF Grant DMS-1638352, the Association of Members of the Institute for Advanced Study, the Hausdorff Research Institute for Mathematics, and the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy - GZ 2047/1, Projekt-ID 390685813. The third author received support from NSF Grant DMS-1501059, CAREER NSF Grant DMS-1847284, and a von Neumann Fellowship funded by the Friends of the Institute for Advanced Study. The fourth author received support from NSF Grant DMS-2002079
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 4411-4427
- MSC (2020): Primary 05E10, 14M12, 17B10
- DOI: https://doi.org/10.1090/tran/8606
- MathSciNet review: 4419063