$G$-cohomologically rigid local systems are integral
HTML articles powered by AMS MathViewer
- by Christian Klevdal and Stefan Patrikis PDF
- Trans. Amer. Math. Soc. 375 (2022), 4153-4175 Request permission
Abstract:
Let $G$ be a reductive group, and let $X$ be a smooth quasi-projective complex variety. We prove that any $G$-irreducible, $G$-cohomologically rigid local system on $X$ with finite order abelianization and quasi-unipotent local monodromies is integral. This generalizes work of Esnault and Groechenig [Selecta Math. (N. S. ) 24 (2018), pp. 4279–4292; Acta Math. 225 (2020), pp. 103–158] when $G= \mathrm {GL}_n$, and it answers positively a conjecture of Simpson [Inst. Hautes Études Sci. Publ. Math. 75 (1992), pp. 5–95; Inst. Hautes Études Sci. Publ. Math. 80 (1994), pp. 5–79] for $G$-cohomologically rigid local systems. Along the way we show that the connected component of the Zariski-closure of the monodromy group of any such local system is semisimple; this moreover holds when we relax cohomological rigidity to rigidity.References
- Donu Arapura, Higgs bundles, integrability, and holomorphic forms, Motives, polylogarithms and Hodge theory, Part II (Irvine, CA, 1998) Int. Press Lect. Ser., vol. 3, Int. Press, Somerville, MA, 2002, pp. 605–624. MR 1978714
- Gebhard Böckle, Michael Harris, Chandrashekhar Khare, and Jack A. Thorne, $\hat G$-local systems on smooth projective curves are potentially automorphic, Acta Math. 223 (2019), no. 1, 1–111. MR 4018263, DOI 10.4310/ACTA.2019.v223.n1.a1
- Christopher Brav and Hugh Thomas, Thin monodromy in Sp(4), Compos. Math. 150 (2014), no. 3, 333–343. MR 3187621, DOI 10.1112/S0010437X13007550
- S. Brochard, B. Conrad, and J. Oesterlé, Autour des schémas en groupes. Vol. I, Panoramas et Synthèses [Panoramas and Syntheses], vol. 42/43, Société Mathématique de France, Paris, 2014 (French). A celebration of SGA3; Lecture notes from the Summer School held at the Centre International de Rencontres Mathématiques (CIRM), Luminy, August 29–September 9, 2011. MR 3309122
- Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 498551, DOI 10.1007/BF02684692
- P. Deligne, Les constantes des équations fonctionnelles des fonctions $L$, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 349, Springer, Berlin, 1973, pp. 501–597 (French). MR 0349635
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520, DOI 10.1007/BF02684780
- Groupes de monodromie en géométrie algébrique. II, Lecture Notes in Mathematics, Vol. 340, Springer-Verlag, Berlin-New York, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II); Dirigé par P. Deligne et N. Katz. MR 0354657
- P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 5–89. MR 849651, DOI 10.1007/BF02831622
- Vladimir Drinfeld, On a conjecture of Deligne, Mosc. Math. J. 12 (2012), no. 3, 515–542, 668 (English, with English and Russian summaries). MR 3024821, DOI 10.17323/1609-4514-2012-12-3-515-542
- Vladimir Drinfeld, On the pro-semisimple completion of the fundamental group of a smooth variety over a finite field, Adv. Math. 327 (2018), 708–788. MR 3762002, DOI 10.1016/j.aim.2017.06.029
- Hélène Esnault and Michael Groechenig, Rigid connections and $F$-isocrystals, Acta Math. 225 (2020), no. 1, 103–158. MR 4176065, DOI 10.4310/ACTA.2020.v225.n1.a2
- Hélène Esnault and Michael Groechenig, Cohomologically rigid local systems and integrality, Selecta Math. (N.S.) 24 (2018), no. 5, 4279–4292. MR 3874695, DOI 10.1007/s00029-018-0409-z
- Jean-Marc Fontaine and Barry Mazur, Geometric Galois representations, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 41–78. MR 1363495
- Alexander Grothendieck and Jacob P. Murre, The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme, Lecture Notes in Mathematics, Vol. 208, Springer-Verlag, Berlin-New York, 1971. MR 0316453
- Richard Kershner, The number of circles covering a set, Amer. J. Math. 61 (1939), 665–671. MR 43, DOI 10.2307/2371320
- Jean-Pierre Jouanolou, Théorèmes de Bertini et applications, Université Louis Pasteur, Département de Mathématique, Institut de Recherche Mathématique Avancée, Strasbourg, 1979. MR 658132
- Nicholas M. Katz, Rigid local systems, Annals of Mathematics Studies, vol. 139, Princeton University Press, Princeton, NJ, 1996. MR 1366651, DOI 10.1515/9781400882595
- Martin Kneser, Strong approximation, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 187–196. MR 0213361
- Moritz Kerz and Alexander Schmidt, On different notions of tameness in arithmetic geometry, Math. Ann. 346 (2010), no. 3, 641–668. MR 2578565, DOI 10.1007/s00208-009-0409-6
- Laurent Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147 (2002), no. 1, 1–241 (French, with English and French summaries). MR 1875184, DOI 10.1007/s002220100174
- Vincent Lafforgue, Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale, J. Amer. Math. Soc. 31 (2018), no. 3, 719–891 (French). MR 3787407, DOI 10.1090/jams/897
- Max Lieblich and Martin Olsson, Generators and relations for the étale fundamental group, Pure Appl. Math. Q. 6 (2010), no. 1, Special Issue: In honor of John Tate., 209–243. MR 2591190, DOI 10.4310/PAMQ.2010.v6.n1.a6
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- R. W. Richardson, Conjugacy classes of $n$-tuples in Lie algebras and algebraic groups, Duke Math. J. 57 (1988), no. 1, 1–35. MR 952224, DOI 10.1215/S0012-7094-88-05701-8
- C. S. Seshadri, Geometric reductivity over arbitrary base, Advances in Math. 26 (1977), no. 3, 225–274. MR 466154, DOI 10.1016/0001-8708(77)90041-X
- Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 3, Société Mathématique de France, Paris, 2003 (French). Séminaire de géométrie algébrique du Bois Marie 1960–61. [Algebraic Geometry Seminar of Bois Marie 1960-61]; Directed by A. Grothendieck; With two papers by M. Raynaud; Updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin; MR0354651 (50 #7129)]. MR 2017446
- Carlos T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95. MR 1179076, DOI 10.1007/BF02699491
- Carlos T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. II, Inst. Hautes Études Sci. Publ. Math. 80 (1994), 5–79 (1995). MR 1320603, DOI 10.1007/BF02698895
Additional Information
- Christian Klevdal
- Affiliation: Department of Mathematics, The University of Utah, 155 S 1400 E, Salt Lake City, Utah 84112
- MR Author ID: 1305945
- ORCID: 0000-0003-1898-5592
- Email: klevdal@math.utah.edu
- Stefan Patrikis
- Affiliation: Department of Mathematics, The Ohio State University, 100 Math Tower, 231 West 18th Avenue, Columbus, Ohio 43210
- MR Author ID: 876004
- Email: patrikis.1@osu.edu
- Received by editor(s): September 21, 2020
- Received by editor(s) in revised form: July 16, 2021
- Published electronically: February 17, 2022
- Additional Notes: The first author was supported by NSF grant DMS-1840190. The second author was supported by NSF grants DMS-1700759, DMS-2120325, and DMS-1752313.
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 4153-4175
- MSC (2020): Primary 14F35, 14F20, 11F80
- DOI: https://doi.org/10.1090/tran/8610
- MathSciNet review: 4419055