Generalized Kähler-Ricci flow on toric Fano varieties
HTML articles powered by AMS MathViewer
- by Vestislav Apostolov, Jeffrey Streets and Yury Ustinovskiy PDF
- Trans. Amer. Math. Soc. 375 (2022), 4369-4409 Request permission
Abstract:
We study the generalized Kähler-Ricci flow with initial data of symplectic type, and show that this condition is preserved. In the case of a Fano background with toric symmetry, we establish global existence of the normalized flow. We derive an extension of Perelman’s entropy functional to this setting, which yields convergence of nonsingular solutions at infinity. Furthermore, we derive an extension of Mabuchi’s $K$-energy to this setting, which yields weak convergence of the flow.References
- Miguel Abreu, Kähler geometry of toric varieties and extremal metrics, Internat. J. Math. 9 (1998), no. 6, 641–651. MR 1644291, DOI 10.1142/S0129167X98000282
- Miguel Abreu, Kähler metrics on toric orbifolds, J. Differential Geom. 58 (2001), no. 1, 151–187. MR 1895351
- V. Apostolov, The Kähler geometry of toric manifolds, Lecture Notes of CIRM winter school, 2019. http://www.cirget.uqam.ca/~apostolo/notes.html,
- Vestislav Apostolov, David M. J. Calderbank, Paul Gauduchon, and Christina W. Tønnesen-Friedman, Hamiltonian 2-forms in Kähler geometry. II. Global classification, J. Differential Geom. 68 (2004), no. 2, 277–345. MR 2144249
- Vestislav Apostolov, Paul Gauduchon, and Gueo Grantcharov, Corrigendum: “Bi-Hermitian structures on complex surfaces” [Proc. London Math. Soc. (3) 79 (1999), no. 2, 414–428; MR1702248], Proc. London Math. Soc. (3) 92 (2006), no. 1, 200–202. MR 2192389, DOI 10.1017/S0024611505015510
- Vestislav Apostolov and Jeffrey Streets, The nondegenerate generalized Kähler Calabi-Yau problem, J. Reine Angew. Math. 777 (2021), 1–48. MR 4292863, DOI 10.1515/crelle-2021-0016
- Robert J. Berman, Sebastien Boucksom, Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi, Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties, J. Reine Angew. Math. 751 (2019), 27–89. MR 3956691, DOI 10.1515/crelle-2016-0033
- Robert J. Berman, Tamás Darvas, and Chinh H. Lu, Convexity of the extended K-energy and the large time behavior of the weak Calabi flow, Geom. Topol. 21 (2017), no. 5, 2945–2988. MR 3687111, DOI 10.2140/gt.2017.21.2945
- Jean-Michel Bismut, A local index theorem for non-Kähler manifolds, Math. Ann. 284 (1989), no. 4, 681–699. MR 1006380, DOI 10.1007/BF01443359
- Zbigniew Błocki and Sławomir Kołodziej, On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2089–2093. MR 2299485, DOI 10.1090/S0002-9939-07-08858-2
- Laurence Boulanger, Toric generalized Kähler structures, J. Symplectic Geom. 17 (2019), no. 4, 973–1019. MR 4031532, DOI 10.4310/JSG.2019.v17.n4.a2
- Huai Dong Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math. 81 (1985), no. 2, 359–372. MR 799272, DOI 10.1007/BF01389058
- Xiuxiong Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000), no. 2, 189–234. MR 1863016
- Xiuxiong Chen, Song Sun, and Bing Wang, Kähler-Ricci flow, Kähler-Einstein metric, and K-stability, Geom. Topol. 22 (2018), no. 6, 3145–3173. MR 3858762, DOI 10.2140/gt.2018.22.3145
- T. Darvas, E. George, and K. Smith, Optimal asymptotic of the $J$-functional with respect to the $d_1$-metric, arXiv:2101.02589.
- Tamás Darvas, The Mabuchi geometry of finite energy classes, Adv. Math. 285 (2015), 182–219. MR 3406499, DOI 10.1016/j.aim.2015.08.005
- Tamás Darvas and Yanir A. Rubinstein, Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Amer. Math. Soc. 30 (2017), no. 2, 347–387. MR 3600039, DOI 10.1090/jams/873
- Thomas Delzant, Hamiltoniens périodiques et images convexes de l’application moment, Bull. Soc. Math. France 116 (1988), no. 3, 315–339 (French, with English summary). MR 984900, DOI 10.24033/bsmf.2100
- Jean-Pierre Demailly and Mihai Paun, Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. (2) 159 (2004), no. 3, 1247–1274. MR 2113021, DOI 10.4007/annals.2004.159.1247
- Ruadhaí Dervan and Gábor Székelyhidi, The Kähler-Ricci flow and optimal degenerations, J. Differential Geom. 116 (2020), no. 1, 187–203. MR 4146359, DOI 10.4310/jdg/1599271255
- S. K. Donaldson, Remarks on gauge theory, complex geometry and $4$-manifold topology, Fields Medallists’ lectures, World Sci. Ser. 20th Century Math., vol. 5, World Sci. Publ., River Edge, NJ, 1997, pp. 384–403. MR 1622931, DOI 10.1142/9789812385215_{0}042
- S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), no. 2, 289–349. MR 1988506, DOI 10.4310/jdg/1090950195
- S. K. Donaldson, Interior estimates for solutions of Abreu’s equation, Collect. Math. 56 (2005), no. 2, 103–142. MR 2154300
- S. K. Donaldson, Extremal metrics on toric surfaces: a continuity method, J. Differential Geom. 79 (2008), no. 3, 389–432. MR 2433928, DOI 10.4310/jdg/1213798183
- Simon K. Donaldson, Kähler geometry on toric manifolds, and some other manifolds with large symmetry, Handbook of geometric analysis. No. 1, Adv. Lect. Math. (ALM), vol. 7, Int. Press, Somerville, MA, 2008, pp. 29–75. MR 2483362
- Nicola Enrietti, Anna Fino, and Gueo Grantcharov, Tamed symplectic forms and generalized geometry, J. Geom. Phys. 71 (2013), 103–116. MR 3062457, DOI 10.1016/j.geomphys.2013.04.006
- Akira Fujiki, Moduli space of polarized algebraic manifolds and Kähler metrics [translation of Sûgaku 42 (1990), no. 3, 231–243; MR1073369 (92b:32032)], Sugaku Expositions 5 (1992), no. 2, 173–191. Sugaku Expositions. MR 1207204
- Mario Garcia-Fernandez and Jeffrey Streets, Generalized Ricci flow, University Lecture Series, vol. 76, American Mathematical Society, Providence, RI, [2021] ©2021. MR 4284898, DOI 10.1090/ulect/076
- S. J. Gates Jr., C. M. Hull, and M. Roček, Twisted multiplets and new supersymmetric nonlinear $\sigma$-models, Nuclear Phys. B 248 (1984), no. 1, 157–186. MR 776369, DOI 10.1016/0550-3213(84)90592-3
- Paul Gauduchon, Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. B (7) 11 (1997), no. 2, suppl., 257–288 (English, with Italian summary). MR 1456265
- Matthew Gibson and Jeffrey Streets, Deformation classes in generalized Kähler geometry, Complex Manifolds 7 (2020), no. 1, 241–256. MR 4171113, DOI 10.1515/coma-2020-0101
- Ryushi Goto, Unobstructed K-deformations of generalized complex structures and bi-Hermitian structures, Adv. Math. 231 (2012), no. 2, 1041–1067. MR 2955201, DOI 10.1016/j.aim.2012.05.004
- Ryushi Goto, Scalar curvature as moment map in generalized Kähler geometry, J. Symplectic Geom. 18 (2020), no. 1, 147–190. MR 4088750, DOI 10.4310/JSG.2020.v18.n1.a4
- Marco Gualtieri, Branes on Poisson varieties, The many facets of geometry, Oxford Univ. Press, Oxford, 2010, pp. 368–394. MR 2681704, DOI 10.1093/acprof:oso/9780199534920.003.0018
- M. Gualtieri, Generalized Kähler geometry, PhD Thesis, arXiv:1007.3485.
- Marco Gualtieri, Generalized complex geometry, Ann. of Math. (2) 174 (2011), no. 1, 75–123. MR 2811595, DOI 10.4007/annals.2011.174.1.3
- Marco Gualtieri, Generalized Kähler geometry, Comm. Math. Phys. 331 (2014), no. 1, 297–331. MR 3232003, DOI 10.1007/s00220-014-1926-z
- Marco Gualtieri, Generalized Kähler metrics from Hamiltonian deformations, Geometry and physics. Vol. II, Oxford Univ. Press, Oxford, 2018, pp. 551–579. MR 3931787
- V. Guedj, The metric completion of the Riemannian space of Kähler metrics, arXiv:1401.7857.
- Vincent Guedj and Ahmed Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007), no. 2, 442–482. MR 2352488, DOI 10.1016/j.jfa.2007.04.018
- Victor Guillemin, Kaehler structures on toric varieties, J. Differential Geom. 40 (1994), no. 2, 285–309. MR 1293656
- Richard S. Hamilton, A compactness property for solutions of the Ricci flow, Amer. J. Math. 117 (1995), no. 3, 545–572. MR 1333936, DOI 10.2307/2375080
- T. Hisamoto, Stability and coercivity for toric polarizations, arXiv:1610.07998.
- Nigel Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math. 54 (2003), no. 3, 281–308. MR 2013140, DOI 10.1093/qjmath/54.3.281
- Nigel Hitchin, Instantons, Poisson structures and generalized Kähler geometry, Comm. Math. Phys. 265 (2006), no. 1, 131–164. MR 2217300, DOI 10.1007/s00220-006-1530-y
- Nigel Hitchin, Bihermitian metrics on del Pezzo surfaces, J. Symplectic Geom. 5 (2007), no. 1, 1–8. MR 2371181, DOI 10.4310/JSG.2007.v5.n1.a2
- S. Ivanov and G. Papadopoulos, Vanishing theorems and string backgrounds, Classical Quantum Gravity 18 (2001), no. 6, 1089–1110. MR 1822270, DOI 10.1088/0264-9381/18/6/309
- Joshua Jordan and Jeffrey Streets, On a Calabi-type estimate for pluriclosed flow, Adv. Math. 366 (2020), 107097, 18. MR 4073308, DOI 10.1016/j.aim.2020.107097
- Eugene Lerman and Susan Tolman, Hamiltonian torus actions on symplectic orbifolds and toric varieties, Trans. Amer. Math. Soc. 349 (1997), no. 10, 4201–4230. MR 1401525, DOI 10.1090/S0002-9947-97-01821-7
- G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159.
- D. H. Phong, Jian Song, Jacob Sturm, and Ben Weinkove, On the convergence of the modified Kähler-Ricci flow and solitons, Comment. Math. Helv. 86 (2011), no. 1, 91–112. MR 2745277, DOI 10.4171/CMH/219
- Massimiliano Pontecorvo, Complex structures on Riemannian four-manifolds, Math. Ann. 309 (1997), no. 1, 159–177. MR 1467652, DOI 10.1007/s002080050108
- Jeffrey Streets, Classification of solitons for pluriclosed flow on complex surfaces, Math. Ann. 375 (2019), no. 3-4, 1555–1595. MR 4023384, DOI 10.1007/s00208-019-01887-4
- Jeffrey Streets, Generalized Kähler-Ricci flow and the classification of nondegenerate generalized Kähler surfaces, Adv. Math. 316 (2017), 187–215. MR 3672905, DOI 10.1016/j.aim.2017.06.002
- Jeffrey Streets, Pluriclosed flow, Born-Infeld geometry, and rigidity results for generalized Kähler manifolds, Comm. Partial Differential Equations 41 (2016), no. 2, 318–374. MR 3462132, DOI 10.1080/03605302.2015.1116560
- Jeffrey Streets, Pluriclosed flow on generalized Kähler manifolds with split tangent bundle, J. Reine Angew. Math. 739 (2018), 241–276. MR 3808262, DOI 10.1515/crelle-2015-0055
- Jeffrey Streets, Regularity and expanding entropy for connection Ricci flow, J. Geom. Phys. 58 (2008), no. 7, 900–912. MR 2426247, DOI 10.1016/j.geomphys.2008.02.010
- Jeffrey Streets and Gang Tian, Hermitian curvature flow, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 3, 601–634. MR 2781927, DOI 10.4171/JEMS/262
- Jeffrey Streets and Gang Tian, A parabolic flow of pluriclosed metrics, Int. Math. Res. Not. IMRN 16 (2010), 3101–3133. MR 2673720, DOI 10.1093/imrn/rnp237
- Jeffrey Streets and Gang Tian, Regularity results for pluriclosed flow, Geom. Topol. 17 (2013), no. 4, 2389–2429. MR 3110582, DOI 10.2140/gt.2013.17.2389
- Jeffrey Streets and Gang Tian, Generalized Kähler geometry and the pluriclosed flow, Nuclear Phys. B 858 (2012), no. 2, 366–376. MR 2881439, DOI 10.1016/j.nuclphysb.2012.01.008
- Jeffrey Streets and Yury Ustinovskiy, Classification of generalized Kähler-Ricci solitons on complex surfaces, Comm. Pure Appl. Math. 74 (2021), no. 9, 1896–1914. MR 4287690, DOI 10.1002/cpa.21947
- J. Streets and Y. Ustinovskiy, The Gibbons-Hawking ansatz in generalized Kähler geometry, arXiv:2009.00778.
- Gang Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $C_1(M)>0$, Invent. Math. 89 (1987), no. 2, 225–246. MR 894378, DOI 10.1007/BF01389077
- Gang Tian, Shijin Zhang, Zhenlei Zhang, and Xiaohua Zhu, Perelman’s entropy and Kähler-Ricci flow on a Fano manifold, Trans. Amer. Math. Soc. 365 (2013), no. 12, 6669–6695. MR 3105766, DOI 10.1090/S0002-9947-2013-06027-8
- Gang Tian and Zhenlei Zhang, Regularity of Kähler-Ricci flows on Fano manifolds, Acta Math. 216 (2016), no. 1, 127–176. MR 3508220, DOI 10.1007/s11511-016-0137-1
- Gang Tian and Xiaohua Zhu, Convergence of Kähler-Ricci flow, J. Amer. Math. Soc. 20 (2007), no. 3, 675–699. MR 2291916, DOI 10.1090/S0894-0347-06-00552-2
- Gang Tian and Xiaohua Zhu, Convergence of the Kähler-Ricci flow on Fano manifolds, J. Reine Angew. Math. 678 (2013), 223–245. MR 3056108, DOI 10.1515/crelle.2012.021
- Xu-Jia Wang and Xiaohua Zhu, Kähler-Ricci solitons on toric manifolds with positive first Chern class, Adv. Math. 188 (2004), no. 1, 87–103. MR 2084775, DOI 10.1016/j.aim.2003.09.009
- Y. Wang, Toric generalized Kähler structures I, arxiv:1810.08265.
- Y. Wang, Toric generalized Kähler structures II, arxiv:1811.06848.
- Y. Wang, Toric generalized Kähler structures III, to appear in Journal of Geometry and Physics.
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI 10.1002/cpa.3160310304
- Xiaohua Zhu, Kähler-Ricci flow on a toric manifold with positive first Chern class, Differential geometry, Adv. Lect. Math. (ALM), vol. 22, Int. Press, Somerville, MA, 2012, pp. 323–336. MR 3076057
- Bin Zhou and Xiaohua Zhu, Relative $K$-stability and modified $K$-energy on toric manifolds, Adv. Math. 219 (2008), no. 4, 1327–1362. MR 2450612, DOI 10.1016/j.aim.2008.06.016
Additional Information
- Vestislav Apostolov
- Affiliation: Départment de matheématiques, Université du Québec à Montréal, Case postale 8888, succursale centre-ville, Mongtréal (Québec) H3C 3P8, Canada
- MR Author ID: 366272
- ORCID: 0000-0002-6445-2773
- Email: apostolov.vestislav@uqam.ca
- Jeffrey Streets
- Affiliation: Rowland Hall, University of California, Irvine, California 92617
- MR Author ID: 828981
- Email: jstreets@uci.edu
- Yury Ustinovskiy
- Affiliation: Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012-1185
- MR Author ID: 887998
- ORCID: 0000-0002-2510-4098
- Email: yuraust@gmail.com
- Received by editor(s): April 14, 2021
- Received by editor(s) in revised form: August 6, 2021, August 19, 2021, and November 8, 2021
- Published electronically: March 16, 2022
- Additional Notes: The second author was supported by the NSF via DMS-1454854. The first author was supported in part by an NSERC Discovery Grant
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 4369-4409
- MSC (2020): Primary 53E30, 53D18
- DOI: https://doi.org/10.1090/tran/8619
- MathSciNet review: 4419062