New estimates for the maximal functions and applications
HTML articles powered by AMS MathViewer
- by Óscar Domínguez and Sergey Tikhonov PDF
- Trans. Amer. Math. Soc. 375 (2022), 3969-4018 Request permission
Abstract:
In this paper we study sharp pointwise inequalities for maximal operators. In particular, we strengthen DeVore’s inequality for the moduli of smoothness and a logarithmic variant of Bennett–DeVore–Sharpley’s inequality for rearrangements. As a consequence, we improve the classical Stein–Zygmund embedding deriving $\dot {B}^{d/p}_\infty L_{p,\infty }(\mathbb {R}^d) \hookrightarrow \text {BMO}(\mathbb {R}^d)$ for $1 < p < \infty$. Moreover, these results are also applied to establish new Fefferman–Stein inequalities, Calderón–Scott type inequalities, and extrapolation estimates. Our approach is based on the limiting interpolation techniques.References
- Aljanc̆ić, S.: Sur le module de séries de Fourier particuliéres et sur le module des séries de Fourier transformées par des multiplicateurs de types divers. (French) Acad. Serbe Sci. Arts, Bull. 40, Cl. Sci. Math. Nat., Sci. Math., N. Sér. No. 6, 13-38 (1967).
- Sergey V. Astashkin, Konstantin V. Lykov, and Mario Milman, Limiting interpolation spaces via extrapolation, J. Approx. Theory 240 (2019), 16–70. MR 3926051, DOI 10.1016/j.jat.2018.09.007
- Sergey Astashkin and Mario Milman, Garsia-Rodemich spaces: local maximal functions and interpolation, Studia Math. 255 (2020), no. 1, 1–26. MR 4121383, DOI 10.4064/sm190206-6-10
- Richard J. Bagby and Douglas S. Kurtz, A rearranged good $\lambda$ inequality, Trans. Amer. Math. Soc. 293 (1986), no. 1, 71–81. MR 814913, DOI 10.1090/S0002-9947-1986-0814913-7
- Jesús Bastero, Mario Milman, and Francisco J. Ruiz Blasco, A note on $L(\infty ,q)$ spaces and Sobolev embeddings, Indiana Univ. Math. J. 52 (2003), no. 5, 1215–1230. MR 2010324, DOI 10.1512/iumj.2003.52.2364
- Colin Bennett, Ronald A. DeVore, and Robert Sharpley, Weak-$L^{\infty }$ and BMO, Ann. of Math. (2) 113 (1981), no. 3, 601–611. MR 621018, DOI 10.2307/2006999
- Colin Bennett and Karl Rudnick, On Lorentz-Zygmund spaces, Dissertationes Math. (Rozprawy Mat.) 175 (1980), 67. MR 576995
- Colin Bennett and Robert Sharpley, Weak-type inequalities for $H^{p}$ and BMO, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 201–229. MR 545259
- Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275, DOI 10.1007/978-3-642-66451-9
- N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1987. MR 898871, DOI 10.1017/CBO9780511721434
- Haïm Brezis, Jean Van Schaftingen, and Po-Lam Yung, A surprising formula for Sobolev norms, Proc. Natl. Acad. Sci. USA 118 (2021), no. 8, Paper No. e2025254118, 6. MR 4275122, DOI 10.1073/pnas.2025254118
- Yu. A. Brudnyĭ and N. Ya. Krugljak, Interpolation functors and interpolation spaces. Vol. I, North-Holland Mathematical Library, vol. 47, North-Holland Publishing Co., Amsterdam, 1991. Translated from the Russian by Natalie Wadhwa; With a preface by Jaak Peetre. MR 1107298
- Elia Brué, Maria Colombo, and Camillo De Lellis, Positive solutions of transport equations and classical nonuniqueness of characteristic curves, Arch. Ration. Mech. Anal. 240 (2021), no. 2, 1055–1090. MR 4244826, DOI 10.1007/s00205-021-01628-5
- Calixto P. Calderón and Mario Milman, Interpolation of Sobolev spaces. The real method, Indiana Univ. Math. J. 32 (1983), no. 6, 801–808. MR 721564, DOI 10.1512/iumj.1983.32.32054
- Alberto-P. Calderón and Ridgway Scott, Sobolev type inequalities for $p>0$, Studia Math. 62 (1978), no. 1, 75–92. MR 487419, DOI 10.4064/sm-62-1-75-92
- María J. Carro, José A. Raposo, and Javier Soria, Recent developments in the theory of Lorentz spaces and weighted inequalities, Mem. Amer. Math. Soc. 187 (2007), no. 877, xii+128. MR 2308059, DOI 10.1090/memo/0877
- Fernando Chamizo, Antonio Córdoba, and Adrián Ubis, Fourier series in BMO with number theoretical implications, Math. Ann. 376 (2020), no. 1-2, 457–473. MR 4055167, DOI 10.1007/s00208-019-01882-9
- Michael Cwikel, Yoram Sagher, and Pavel Shvartsman, A new look at the John-Nirenberg and John-Strömberg theorems for BMO, J. Funct. Anal. 263 (2012), no. 1, 129–166. MR 2920844, DOI 10.1016/j.jfa.2012.04.003
- R. DeVore, Embeddings of Besov spaces into BMO, Approximation and function spaces (Gdańsk, 1979) North-Holland, Amsterdam-New York, 1981, pp. 259–263. MR 649431
- Ronald A. DeVore, Sherman D. Riemenschneider, and Robert C. Sharpley, Weak interpolation in Banach spaces, J. Functional Analysis 33 (1979), no. 1, 58–94. MR 545385, DOI 10.1016/0022-1236(79)90018-1
- R. DeVore and K. Scherer, Interpolation of linear operators on Sobolev spaces, Ann. of Math. (2) 109 (1979), no. 3, 583–599. MR 534764, DOI 10.2307/1971227
- Ronald A. DeVore and Robert C. Sharpley, Maximal functions measuring smoothness, Mem. Amer. Math. Soc. 47 (1984), no. 293, viii+115. MR 727820, DOI 10.1090/memo/0293
- Óscar Domínguez, Dorothee D. Haroske, and Sergey Tikhonov, Embeddings and characterizations of Lipschitz spaces, J. Math. Pures Appl. (9) 144 (2020), 69–105 (English, with English and French summaries). MR 4175445, DOI 10.1016/j.matpur.2020.11.004
- O. Domínguez and S. Tikhonov, Function spaces of logarithmic smoothness: embeddings and characterizations. Mem. Amer. Math. Soc. (to appear). arXiv:1811.06399
- O.Domínguez and S. Tikhonov, Sobolev embeddings, extrapolations, and related inequalities. arXiv:1909.12818
- W. D. Evans and B. Opic, Real interpolation with logarithmic functors and reiteration, Canad. J. Math. 52 (2000), no. 5, 920–960. MR 1782334, DOI 10.4153/CJM-2000-039-2
- W. D. Evans, Bohumír Opic, and Luboš Pick, Real interpolation with logarithmic functors, J. Inequal. Appl. 7 (2002), no. 2, 187–269. MR 1922997, DOI 10.1155/S1025583402000127
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- John B. Garnett and Peter W. Jones, The distance in BMO to $L^{\infty }$, Ann. of Math. (2) 108 (1978), no. 2, 373–393. MR 506992, DOI 10.2307/1971171
- Adriano M. Garsia, A remarkable inequality and the uniform convergence of Fourier series, Indiana Univ. Math. J. 25 (1976), no. 1, 85–102. MR 413247, DOI 10.1512/iumj.1976.25.25008
- Amiran Gogatishvili, Bohumír Opic, Sergey Tikhonov, and Walter Trebels, Ulyanov-type inequalities between Lorentz-Zygmund spaces, J. Fourier Anal. Appl. 20 (2014), no. 5, 1020–1049. MR 3254611, DOI 10.1007/s00041-014-9343-4
- Amiran Gogatishvili, Bohumír Opic, and Walter Trebels, Limiting reiteration for real interpolation with slowly varying functions, Math. Nachr. 278 (2005), no. 1-2, 86–107. MR 2111802, DOI 10.1002/mana.200310228
- Dmitry Gorbachev and Sergey Tikhonov, Moduli of smoothness and growth properties of Fourier transforms: two-sided estimates, J. Approx. Theory 164 (2012), no. 9, 1283–1312. MR 2948566, DOI 10.1016/j.jat.2012.05.017
- Loukas Grafakos, Modern Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 250, Springer, New York, 2009. MR 2463316, DOI 10.1007/978-0-387-09434-2
- Loukas Grafakos and Lenka Slavíková, A sharp version of the Hörmander multiplier theorem, Int. Math. Res. Not. IMRN 15 (2019), 4764–4783. MR 3988668, DOI 10.1093/imrn/rnx314
- Jan Gustavsson, A function parameter in connection with interpolation of Banach spaces, Math. Scand. 42 (1978), no. 2, 289–305. MR 512275, DOI 10.7146/math.scand.a-11754
- C. Herz, The Hardy–Littlewood maximal theorem. Symposium on Harmonic Analysis, University of Warwick, 1968.
- Tord Holmstedt, Interpolation of quasi-normed spaces, Math. Scand. 26 (1970), 177–199. MR 415352, DOI 10.7146/math.scand.a-10976
- Tuomas Hytönen and Carlos Pérez, Sharp weighted bounds involving $A_\infty$, Anal. PDE 6 (2013), no. 4, 777–818. MR 3092729, DOI 10.2140/apde.2013.6.777
- Björn Jawerth and Mario Milman, Extrapolation theory with applications, Mem. Amer. Math. Soc. 89 (1991), no. 440, iv+82. MR 1046185, DOI 10.1090/memo/0440
- B. Jawerth and A. Torchinsky, Local sharp maximal functions, J. Approx. Theory 43 (1985), no. 3, 231–270. MR 779906, DOI 10.1016/0021-9045(85)90102-9
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317
- V. I. Kolyada, Imbedding in BMO and $\textrm {exp}\,L^\alpha$ spaces, Dokl. Akad. Nauk SSSR 287 (1986), no. 2, 277–280 (Russian). MR 835082
- V. I. Kolyada, Estimates for maximal functions connected with local smoothness, Dokl. Akad. Nauk SSSR 293 (1987), no. 3, 534–537 (Russian). MR 884050
- V. I. Kolyada, Estimates for mean oscillations over multidimensional intervals in terms of integral smoothness, Math. Nachr. 133 (1987), 43–61 (Russian). MR 912419, DOI 10.1002/mana.19871330104
- V. I. Kolyada, Estimates for rearrangements and embedding theorems, Mat. Sb. (N.S.) 136(178) (1988), no. 1, 3–23, 160 (Russian); English transl., Math. USSR-Sb. 64 (1989), no. 1, 1–21. MR 945897, DOI 10.1070/SM1989v064n01ABEH003291
- V. I. Kolyada, Rearrangements of functions, and embedding theorems, Uspekhi Mat. Nauk 44 (1989), no. 5(269), 61–95 (Russian); English transl., Russian Math. Surveys 44 (1989), no. 5, 73–117. MR 1040269, DOI 10.1070/RM1989v044n05ABEH002287
- V. I. Kolyada, Estimates of maximal functions measuring local smoothness, Anal. Math. 25 (1999), no. 4, 277–300 (English, with English and Russian summaries). MR 1744614, DOI 10.1007/BF02908442
- V. I. Kolyada and L. Leindler, BMO- and $L_p$-conditions for power series and Dirichlet series with positive coefficients, Anal. Math. 24 (1998), no. 2, 79–89 (English, with English and Russian summaries). MR 1618170, DOI 10.1007/BF02771075
- V. I. Kolyada and A. K. Lerner, On limiting embeddings of Besov spaces, Studia Math. 171 (2005), no. 1, 1–13. MR 2182269, DOI 10.4064/sm171-1-1
- Douglas S. Kurtz, Operator estimates using the sharp function, Pacific J. Math. 139 (1989), no. 2, 267–277. MR 1011213, DOI 10.2140/pjm.1989.139.267
- A. K. Lerner, Maximal functions with respect to differential bases measuring mean oscillation, Anal. Math. 24 (1998), no. 1, 41–58 (English, with English and Russian summaries). MR 1612077, DOI 10.1007/BF02771073
- A. K. Lerner, On weighted estimates of non-increasing rearrangements, East J. Approx. 4 (1998), no. 2, 277–290. Dedicated to P. L. Ul′yanov. MR 1638347
- Andrei K. Lerner, Weighted rearrangement inequalities for local sharp maximal functions, Trans. Amer. Math. Soc. 357 (2005), no. 6, 2445–2465. MR 2140445, DOI 10.1090/S0002-9947-04-03598-6
- Andrei K. Lerner, Some remarks on the Fefferman-Stein inequality, J. Anal. Math. 112 (2010), 329–349. MR 2763004, DOI 10.1007/s11854-010-0032-1
- Andrei K. Lerner, A characterization of the weighted weak type Coifman-Fefferman and Fefferman-Stein inequalities, Math. Ann. 378 (2020), no. 1-2, 425–446. MR 4150923, DOI 10.1007/s00208-020-01980-z
- Andrei K. Lerner, A note on the Coifman-Fefferman and Fefferman-Stein inequalities, Ark. Mat. 58 (2020), no. 2, 357–367. MR 4176084, DOI 10.4310/ARKIV.2020.v58.n2.a7
- Joaquim Martín, Symmetrization inequalities in the fractional case and Besov embeddings, J. Math. Anal. Appl. 344 (2008), no. 1, 99–123. MR 2416295, DOI 10.1016/j.jmaa.2008.02.028
- Joaquim Martín and Mario Milman, Symmetrization inequalities and Sobolev embeddings, Proc. Amer. Math. Soc. 134 (2006), no. 8, 2335–2347. MR 2213707, DOI 10.1090/S0002-9939-06-08277-3
- Joaquim Martín and Mario Milman, Pointwise symmetrization inequalities for Sobolev functions and applications, Adv. Math. 225 (2010), no. 1, 121–199. MR 2669351, DOI 10.1016/j.aim.2010.02.022
- Joaquim Martín and Mario Milman, Fractional Sobolev inequalities: symmetrization, isoperimetry and interpolation, Astérisque 366 (2014), x+127 (English, with English and French summaries). MR 3308452
- Joaquim Martin, Mario Milman, and Evgeniy Pustylnik, Sobolev inequalities: symmetrization and self-improvement via truncation, J. Funct. Anal. 252 (2007), no. 2, 677–695. MR 2360932, DOI 10.1016/j.jfa.2007.05.017
- Milman, M.: $BMO$: oscillations, self improvement, Gagliardo coordinate spaces, and reverse Hardy inequalities. In: Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory. 1, Assoc. Women Math. Ser. Assoc. Women Math. Ser., 4, Springer, 2016, 233–274.
- Milman, M.: Addendum to “$BMO$: oscillations, self improvement, Gagliardo coordinate spaces and reverse Hardy inequalities”. ArXiv:1806.08275
- Mario Milman and Evgeniy Pustylnik, On sharp higher order Sobolev embeddings, Commun. Contemp. Math. 6 (2004), no. 3, 495–511. MR 2068850, DOI 10.1142/S0219199704001380
- Evgeniy Pustylnik, On a rearrangement-invariant function set that appears in optimal Sobolev embeddings, J. Math. Anal. Appl. 344 (2008), no. 2, 788–798. MR 2426309, DOI 10.1016/j.jmaa.2008.03.029
- Yoram Sagher, Integrability conditions for the Fourier transform, J. Math. Anal. Appl. 54 (1976), no. 1, 151–156. MR 402401, DOI 10.1016/0022-247X(76)90241-9
- Y. Sagher and P. Shvartsman, Rearrangement-function inequalities and interpolation theory, J. Approx. Theory 119 (2002), no. 2, 214–251. MR 1939283, DOI 10.1006/jath.2002.3730
- Andreas Seeger and Walter Trebels, Embeddings for spaces of Lorentz-Sobolev type, Math. Ann. 373 (2019), no. 3-4, 1017–1056. MR 3953119, DOI 10.1007/s00208-018-1730-8
- Pavel Shvartsman, The $K$-functional of the pair $(L_\infty (w),\rm BMO)$, Function spaces, interpolation spaces, and related topics (Haifa, 1995) Israel Math. Conf. Proc., vol. 13, Bar-Ilan Univ., Ramat Gan, 1999, pp. 183–203. MR 1707365
- W. T. Sledd and D. A. Stegenga, An $H^{1}$ multiplier theorem, Ark. Mat. 19 (1981), no. 2, 265–270. MR 650500, DOI 10.1007/BF02384484
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- E. M. Stein and A. Zygmund, Boundedness of translation invariant operators on Hölder spaces and $L^{p}$-spaces, Ann. of Math. (2) 85 (1967), 337–349. MR 215121, DOI 10.2307/1970445
- D. Stolyarov, Hardy–Littlewood–Sobolev inequality for $p=1$. arXiv:2010.05297
- Jan-Olov Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J. 28 (1979), no. 3, 511–544. MR 529683, DOI 10.1512/iumj.1979.28.28037
- S. Yu. Tikhonov, On the integrability of trigonometric series, Mat. Zametki 78 (2005), no. 3, 476–480 (Russian); English transl., Math. Notes 78 (2005), no. 3-4, 437–442. MR 2227520, DOI 10.1007/s11006-005-0143-7
- S. Tikhonov, Trigonometric series with general monotone coefficients, J. Math. Anal. Appl. 326 (2007), no. 1, 721–735. MR 2277815, DOI 10.1016/j.jmaa.2006.02.053
- Hans Triebel, Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library, vol. 18, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503903
- Hans Triebel, Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag, Basel, 1983. MR 781540, DOI 10.1007/978-3-0346-0416-1
- Hans Triebel, Theory of function spaces IV, Monographs in Mathematics, vol. 107, Birkhäuser/Springer, Cham, [2020] ©2020. MR 4298338, DOI 10.1007/978-3-030-35891-4
Additional Information
- Óscar Domínguez
- Affiliation: Université Lyon 1, Institut Camille Jordan, 43 Blvd du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France and Departamento de Análisis Matemático y Matemática Aplicada, Facultad de Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid, Spain
- Email: dominguez@math.univ-lyon1.fr; oscar.dominguez@ucm.es
- Sergey Tikhonov
- Affiliation: Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C 08193 Bellaterra (Barcelona), Spain; ICREA, Pg. Lluív Companys 23, 08010 Barcelona, Spain, and Universitat Autònoma de Barcelona
- MR Author ID: 706641
- ORCID: 0000-0001-5061-4308
- Email: stikhonov@crm.cat
- Received by editor(s): February 9, 2021
- Published electronically: March 16, 2022
- Additional Notes: The first author was partially supported by the French National Research Agency (ANR-10-LABX-0070), (ANR-11-IDEX-0007) and by MTM2017-84058-P(AEI/FEDER, UE)
The second author was partially supported by PID2020-114948GB-I00, 2017 SGR 358, AP08856479, the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M), and the CERCA Programme of the Generalitat de Catalunya - © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 3969-4018
- MSC (2020): Primary 46E35, 42B35; Secondary 26A15, 46E30, 46B70
- DOI: https://doi.org/10.1090/tran/8632
- MathSciNet review: 4419051