Todorc̆ević’ trichotomy and a hierarchy in the class of tame dynamical systems
HTML articles powered by AMS MathViewer
- by Eli Glasner and Michael Megrelishvili PDF
- Trans. Amer. Math. Soc. 375 (2022), 4513-4548 Request permission
Abstract:
Todorc̆ević’ trichotomy in the class of separable Rosenthal compacta induces a hierarchy in the class of tame (compact, metrizable) dynamical systems $(X,T)$ according to the topological properties of their enveloping semigroups $E(X)$. More precisely, we define the classes \begin{equation*} \mathrm {Tame}_\mathbf {2} \subset \mathrm {Tame}_\mathbf {1} \subset \mathrm {Tame}, \end{equation*} where $\mathrm {Tame}_\mathbf {1}$ is the proper subclass of tame systems with first countable $E(X)$, and $\mathrm {Tame}_\mathbf {2}$ is its proper subclass consisting of systems with hereditarily separable $E(X)$. We study some general properties of these classes and exhibit many examples to illustrate these properties.References
- E. Akin, Enveloping linear maps, Topological dynamics and applications (Minneapolis, MN, 1995) Contemp. Math., vol. 215, Amer. Math. Soc., Providence, RI, 1998, pp. 121–131. MR 1603161, DOI 10.1090/conm/215/02934
- E. Akin, J. Auslander, and K. Berg, Almost equicontinuity and the enveloping semigroup, Topological dynamics and applications (Minneapolis, MN, 1995) Contemp. Math., vol. 215, Amer. Math. Soc., Providence, RI, 1998, pp. 75–81. MR 1603149, DOI 10.1090/conm/215/02931
- Ethan Akin, Joseph Auslander, and Eli Glasner, The topological dynamics of Ellis actions, Mem. Amer. Math. Soc. 195 (2008), no. 913, vi+152. MR 2437846, DOI 10.1090/memo/0913
- S. A. Argyros, P. Dodos, and V. Kanellopoulos, A classification of separable Rosenthal compacta and its applications, Dissertationes Math. 449 (2008), 52. MR 2358122, DOI 10.4064/dm449-0-1
- Jean-Baptiste Aujogue, Ellis enveloping semigroup for almost canonical model sets of an Euclidean space, Algebr. Geom. Topol. 15 (2015), no. 4, 2195–2237. MR 3402339, DOI 10.2140/agt.2015.15.2195
- Jean-Baptiste Aujogue, Marcy Barge, Johannes Kellendonk, and Daniel Lenz, Equicontinuous factors, proximality and Ellis semigroup for Delone sets, Mathematics of aperiodic order, Progr. Math., vol. 309, Birkhäuser/Springer, Basel, 2015, pp. 137–194. MR 3381481, DOI 10.1007/978-3-0348-0903-0_{5}
- Joseph Auslander, Minimal flows and their extensions, North-Holland Mathematics Studies, vol. 153, North-Holland Publishing Co., Amsterdam, 1988. Notas de Matemática [Mathematical Notes], 122. MR 956049
- François Blanchard, Eli Glasner, Sergiĭ Kolyada, and Alejandro Maass, On Li-Yorke pairs, J. Reine Angew. Math. 547 (2002), 51–68. MR 1900136, DOI 10.1515/crll.2002.053
- M. Baake, T. Jäger, and D. Lenz, Toeplitz flows and model sets, Bull. Lond. Math. Soc. 48 (2016), no. 4, 691–698. MR 3532143, DOI 10.1112/blms/bdw033
- J. Bourgain, Compact sets of first Baire class, Bull. Soc. Math. Belg. 29 (1977), no. 2, 135–143. MR 470931
- J. Bourgain, Some remarks on compact sets of first Baire class, Bull. Soc. Math. Belg. 30 (1978), no. 1, 3–10. MR 549647
- J. Bourgain, On convergent sequences of continuous functions, Bull. Soc. Math. Belg. Sér. B 32 (1980), no. 2, 235–249. MR 682645
- B. H. Bowditch, Convergence groups and configuration spaces, Geometric group theory down under (Canberra, 1996) de Gruyter, Berlin, 1999, pp. 23–54. MR 1714838
- Brian H. Bowditch, A topological characterisation of hyperbolic groups, J. Amer. Math. Soc. 11 (1998), no. 3, 643–667. MR 1602069, DOI 10.1090/S0894-0347-98-00264-1
- Gabriel Debs, Descriptive aspects of Rosenthal compacta, Recent progress in general topology. III, Atlantis Press, Paris, 2014, pp. 205–227. MR 3205485, DOI 10.2991/978-94-6239-024-9_{5}
- Tomasz Downarowicz, Survey of odometers and Toeplitz flows, Algebraic and topological dynamics, Contemp. Math., vol. 385, Amer. Math. Soc., Providence, RI, 2005, pp. 7–37. MR 2180227, DOI 10.1090/conm/385/07188
- T. Downarowicz and F. Durand, Factors of Toeplitz flows and other almost $1-1$ extensions over group rotations, Math. Scand. 90 (2002), no. 1, 57–72. MR 1887094, DOI 10.7146/math.scand.a-14361
- Tomasz Downarowicz and Jacek Serafin, Semicocycle extensions and the stroboscopic property, Topology Appl. 153 (2005), no. 1, 97–106. MR 2172037, DOI 10.1016/j.topol.2004.12.007
- E. B. Dynkin and M. B. Maljutov, Random walk on groups with a finite number of generators, Dokl. Akad. Nauk SSSR 137 (1961), 1042–1045 (Russian). MR 0131904
- Robert Ellis, Lectures on topological dynamics, W. A. Benjamin, Inc., New York, 1969. MR 0267561
- Robert Ellis, The enveloping semigroup of projective flows, Ergodic Theory Dynam. Systems 13 (1993), no. 4, 635–660. MR 1257027, DOI 10.1017/S0143385700007598
- R. Ellis and M. Nerurkar, Weakly almost periodic flows, Trans. Amer. Math. Soc. 313 (1989), no. 1, 103–119. MR 930084, DOI 10.1090/S0002-9947-1989-0930084-3
- Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321
- E. E. Floyd, A nonhomogeneous minimal set, Bull. Amer. Math. Soc. 55 (1949), 957–960. MR 33535, DOI 10.1090/S0002-9904-1949-09318-7
- Juan J. Font and Manuel Sanchis, Sequentially compact subsets and monotone functions: an application to fuzzy theory, Topology Appl. 192 (2015), 113–122. MR 3383286, DOI 10.1016/j.topol.2015.05.074
- G. Fuhrmann, E. Glasner, T. Jäger, and C. Oertel, Irregular model sets and tame dynamics, Trans. Amer. Math. Soc. 374 (2021), no. 5, 3703–3734. MR 4237960, DOI 10.1090/tran/8349
- G. Fuhrmann, J. Kellendonk and R. Yassawi, Tame or wild Toeplitz shifts, arXiv:2010.11128v1.
- Gabriel Fuhrmann and Dominik Kwietniak, On tameness of almost automorphic dynamical systems for general groups, Bull. Lond. Math. Soc. 52 (2020), no. 1, 24–42. MR 4072030, DOI 10.1112/blms.12304
- Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1–49. MR 213508, DOI 10.1007/BF01692494
- Shmuel Glasner, Proximal flows, Lecture Notes in Mathematics, Vol. 517, Springer-Verlag, Berlin-New York, 1976. MR 0474243, DOI 10.1007/BFb0080139
- Eli Glasner, Enveloping semigroups in topological dynamics, Topology Appl. 154 (2007), no. 11, 2344–2363. MR 2328017, DOI 10.1016/j.topol.2007.03.009
- E. Glasner, On tame dynamical systems, Colloq. Math. 105 (2006), no. 2, 283–295. MR 2237913, DOI 10.4064/cm105-2-9
- Eli Glasner, The structure of tame minimal dynamical systems for general groups, Invent. Math. 211 (2018), no. 1, 213–244. MR 3742758, DOI 10.1007/s00222-017-0747-z
- Eli Glasner and Yair Glasner, A metric minimal PI cascade with $2^{\frak c}$ minimal ideals, Ergodic Theory Dynam. Systems 40 (2020), no. 5, 1268–1281. MR 4082263, DOI 10.1017/etds.2018.78
- Eli Glasner and Jonathan L. King, A zero-one law for dynamical properties, Topological dynamics and applications (Minneapolis, MN, 1995) Contemp. Math., vol. 215, Amer. Math. Soc., Providence, RI, 1998, pp. 231–242. MR 1603201, DOI 10.1090/conm/215/02944
- S. Glasner and D. Maon, Rigidity in topological dynamics, Ergodic Theory Dynam. Systems 9 (1989), no. 2, 309–320. MR 1007412, DOI 10.1017/S0143385700004983
- E. Glasner and M. Megrelishvili, Hereditarily non-sensitive dynamical systems and linear representations, Colloq. Math. 104 (2006), no. 2, 223–283. MR 2197078, DOI 10.4064/cm104-2-5
- E. Glasner and M. Megrelishvili, Representations of dynamical systems on Banach spaces not containing $l_1$, Trans. Amer. Math. Soc. 364 (2012), no. 12, 6395–6424. MR 2958941, DOI 10.1090/S0002-9947-2012-05549-8
- E. Glasner and M. Megrelishvili, Banach representations and affine compactifications of dynamical systems, in: Fields institute proceedings dedicated to the 2010 thematic program on asymptotic geometric analysis, M. Ludwig, V.D. Milman, V. Pestov, N. Tomczak-Jaegermann (Editors), Springer, New-York, 2013. arXiv:1204.0432.
- Eli Glasner and Michael Megrelishvili, Representations of dynamical systems on Banach spaces, Recent progress in general topology. III, Atlantis Press, Paris, 2014, pp. 399–470. MR 3205489, DOI 10.2991/978-94-6239-024-9_{9}
- Eli Glasner and Michael Megrelishvili, Circularly ordered dynamical systems, Monatsh. Math. 185 (2018), no. 3, 415–441. MR 3767727, DOI 10.1007/s00605-017-1134-y
- Eli Glasner and Michael Megrelishvili, More on tame dynamical systems, Ergodic theory and dynamical systems in their interactions with arithmetics and combinatorics, Lecture Notes in Math., vol. 2213, Springer, Cham, 2018, pp. 351–392. MR 3821724
- Eli Glasner and Michael Megrelishvili, Group actions on treelike compact spaces, Sci. China Math. 62 (2019), no. 12, 2447–2462. MR 4033154, DOI 10.1007/s11425-018-9488-9
- E. Glasner and M. Megrelishvili, Circular orders, ultrahomogeneity and topological groups, arXiv:1803.06583. Contemporary Mathematics vol. 772 (2021) “Topology, Geometry, and Dynamics: Rokhlin - 100”. DOI 10.1090/conm/772.
- Eli Glasner, Michael Megrelishvili, and Vladimir V. Uspenskij, On metrizable enveloping semigroups, Israel J. Math. 164 (2008), 317–332. MR 2391152, DOI 10.1007/s11856-008-0032-3
- Eli Glasner and Benjamin Weiss, Sensitive dependence on initial conditions, Nonlinearity 6 (1993), no. 6, 1067–1075. MR 1251259, DOI 10.1088/0951-7715/6/6/014
- Kamel N. Haddad and Aimee S. A. Johnson, Auslander systems, Proc. Amer. Math. Soc. 125 (1997), no. 7, 2161–2170. MR 1372033, DOI 10.1090/S0002-9939-97-03768-4
- Wen Huang, Tame systems and scrambled pairs under an abelian group action, Ergodic Theory Dynam. Systems 26 (2006), no. 5, 1549–1567. MR 2266373, DOI 10.1017/S0143385706000198
- T. Jolivet, Combinatorics of Pisot Substitutions, TUCS Dissertations No 164, 2013.
- Angela Köhler, Enveloping semigroups for flows, Proc. Roy. Irish Acad. Sect. A 95 (1995), no. 2, 179–191. MR 1660377
- A. S. Kechris and A. Louveau, A classification of Baire class $1$ functions, Trans. Amer. Math. Soc. 318 (1990), no. 1, 209–236. MR 946424, DOI 10.1090/S0002-9947-1990-0946424-3
- David Kerr and Hanfeng Li, Independence in topological and $C^*$-dynamics, Math. Ann. 338 (2007), no. 4, 869–926. MR 2317754, DOI 10.1007/s00208-007-0097-z
- D. J. Lutzer and H. R. Bennett, Separability, the countable chain condition and the Lindelöf property in linearly orderable spaces, Proc. Amer. Math. Soc. 23 (1969), 664–667. MR 248762, DOI 10.1090/S0002-9939-1969-0248762-3
- Witold Marciszewski, Modifications of the double arrow space and related Banach spaces $C(K)$, Studia Math. 184 (2008), no. 3, 249–262. MR 2369142, DOI 10.4064/sm184-3-4
- A. J. Ostaszewski, A characterization of compact, separable, ordered spaces, J. London Math. Soc. (2) 7 (1974), 758–760. MR 340140, DOI 10.1112/jlms/s2-7.4.758
- Michael E. Paul, Construction of almost automorphic symbolic minimal flows, General Topology and Appl. 6 (1976), no. 1, 45–56. MR 388365, DOI 10.1016/0016-660X(76)90007-6
- R. Pol, On weak and pointwise topology in functions spaces, Preprint, University of Warsaw (1984).
- Haskell P. Rosenthal, A characterization of Banach spaces containing $l^{1}$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413. MR 358307, DOI 10.1073/pnas.71.6.2411
- Leonard Shapiro, Proximality in minimal transformation groups, Proc. Amer. Math. Soc. 26 (1970), 521–525. MR 266183, DOI 10.1090/S0002-9939-1970-0266183-2
- Lynn Arthur Steen and J. Arthur Seebach Jr., Counterexamples in topology, 2nd ed., Springer-Verlag, New York-Heidelberg, 1978. MR 507446, DOI 10.1007/978-1-4612-6290-9
- Stevo Todorčević, Compact subsets of the first Baire class, J. Amer. Math. Soc. 12 (1999), no. 4, 1179–1212. MR 1685782, DOI 10.1090/S0894-0347-99-00312-4
- W. A. Veech, Almost automorphic functions on groups, Amer. J. Math. 87 (1965), 719–751. MR 187014, DOI 10.2307/2373071
- Xiangdong Ye and Ruifeng Zhang, On sensitive sets in topological dynamics, Nonlinearity 21 (2008), no. 7, 1601–1620. MR 2425336, DOI 10.1088/0951-7715/21/7/012
Additional Information
- Eli Glasner
- Affiliation: Department of Mathematics, Tel-Aviv University, Ramat Aviv, Israel
- MR Author ID: 271825
- ORCID: 0000-0003-1167-1283
- Email: glasner@math.tau.ac.il
- Michael Megrelishvili
- Affiliation: Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel
- MR Author ID: 198862
- ORCID: 0000-0002-7892-9069
- Email: megereli@math.biu.ac.il
- Received by editor(s): July 7, 2021
- Published electronically: May 4, 2022
- Additional Notes: This research was supported by a grant of the Israel Science Foundation (ISF 1194/19)
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 4513-4548
- MSC (2020): Primary 37Bxx; Secondary 54H15, 54H05, 54F05
- DOI: https://doi.org/10.1090/tran/8522
- MathSciNet review: 4439484