Area minimizing surfaces in homotopy classes in metric spaces
HTML articles powered by AMS MathViewer
- by Elefterios Soultanis and Stefan Wenger PDF
- Trans. Amer. Math. Soc. 375 (2022), 4711-4739 Request permission
Abstract:
We introduce and study a notion of relative $1$-homotopy type for Sobolev maps from a surface to a metric space spanning a given collection of Jordan curves. We use this to establish the existence and local Hölder regularity of area minimizing surfaces in a given relative $1$-homotopy class in proper geodesic metric spaces admitting a local quadratic isoperimetric inequality. If the underlying space has trivial second homotopy group then relatively $1$-homotopic maps are relatively homotopic. We also obtain an analog for closed surfaces in a given $1$-homotopy class. Our theorems generalize and strengthen results of Lemaire [Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 9 (1982), pp. 91–103], Jost [J. Reine Angew. Math. 359 (1985), pp. 37-54], Schoen–Yau [Ann. of Math. (2) 110 (1979), pp. 127–142], and Sacks–Uhlenbeck [Trans. Amer. Math. Soc. 271 (1982), pp. 639–652].References
- R. Courant, The existence of minimal surfaces of given topological structure under prescribed boundary conditions, Acta Math. 72 (1940), 51–98. MR 2478, DOI 10.1007/BF02546328
- Paul Creutz. Plateau’s problem for singular curves. Comm. Anal. Geom., to appear.
- Paul Creutz and Martin Fitzi, The Plateau–Douglas problem for singular configurations and in general metric spaces, Preprint, arXiv:2008.08922, 2020.
- Ulrich Dierkes, Stefan Hildebrandt, and Anthony J. Tromba, Global analysis of minimal surfaces, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 341, Springer, Heidelberg, 2010. MR 2778928, DOI 10.1007/978-3-642-11706-0
- Jesse Douglas, Solution of the problem of Plateau, Trans. Amer. Math. Soc. 33 (1931), no. 1, 263–321. MR 1501590, DOI 10.1090/S0002-9947-1931-1501590-9
- Jesse Douglas, Minimal surfaces of higher topological structure, Ann. of Math. (2) 40 (1939), no. 1, 205–298. MR 1503457, DOI 10.2307/1968552
- Martin Fitzi and Stefan Wenger, Area minimizing surfaces of bounded genus in metric spaces, J. Reine Angew. Math. 770 (2021), 87–112. MR 4193463, DOI 10.1515/crelle-2020-0001
- Martin Fitzi and Stefan Wenger, Morrey’s $\varepsilon$-conformality lemma in metric spaces, Proc. Amer. Math. Soc. 148 (2020), no. 10, 4285–4298. MR 4135297, DOI 10.1090/proc/15065
- Fengbo Hang and Fanghua Lin, Topology of Sobolev mappings. II, Acta Math. 191 (2003), no. 1, 55–107. MR 2020419, DOI 10.1007/BF02392696
- Fengbo Hang and Fanghua Lin, Topology of Sobolev mappings. IV, Discrete Contin. Dyn. Syst. 13 (2005), no. 5, 1097–1124. MR 2166261, DOI 10.3934/dcds.2005.13.1097
- Emmanuel Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, vol. 5, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. MR 1688256
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
- Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, and Jeremy T. Tyson, Sobolev spaces on metric measure spaces, New Mathematical Monographs, vol. 27, Cambridge University Press, Cambridge, 2015. An approach based on upper gradients. MR 3363168, DOI 10.1017/CBO9781316135914
- Jürgen Jost, Harmonic mappings between Riemannian manifolds, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 4, Australian National University, Centre for Mathematical Analysis, Canberra, 1984. MR 756629
- Jürgen Jost, Conformal mappings and the Plateau-Douglas problem in Riemannian manifolds, J. Reine Angew. Math. 359 (1985), 37–54. MR 794798, DOI 10.1515/crll.1985.359.37
- Jürgen Jost, Equilibrium maps between metric spaces, Calc. Var. Partial Differential Equations 2 (1994), no. 2, 173–204. MR 1385525, DOI 10.1007/BF01191341
- M. B. Karmanova, Area and co-area formulas for mappings of the Sobolev classes with values in a metric space, Sibirsk. Mat. Zh. 48 (2007), no. 4, 778–788 (Russian, with Russian summary); English transl., Siberian Math. J. 48 (2007), no. 4, 621–628. MR 2355373, DOI 10.1007/s11202-007-0064-7
- Bernd Kirchheim, Rectifiable metric spaces: local structure and regularity of the Hausdorff measure, Proc. Amer. Math. Soc. 121 (1994), no. 1, 113–123. MR 1189747, DOI 10.1090/S0002-9939-1994-1189747-7
- Nicholas J. Korevaar and Richard M. Schoen, Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993), no. 3-4, 561–659. MR 1266480, DOI 10.4310/CAG.1993.v1.n4.a4
- Luc Lemaire, Applications harmoniques de surfaces riemanniennes, J. Differential Geometry 13 (1978), no. 1, 51–78 (French). MR 520601
- Luc Lemaire, Boundary value problems for harmonic and minimal maps of surfaces into manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 9 (1982), no. 1, 91–103. MR 664104
- Alexander Lytchak and Stephan Stadler, Conformal deformations of $\rm CAT(0)$ spaces, Math. Ann. 373 (2019), no. 1-2, 155–163. MR 3968869, DOI 10.1007/s00208-018-1703-y
- Alexander Lytchak and Stephan Stadler, Improvements of upper curvature bounds, Trans. Amer. Math. Soc. 373 (2020), no. 10, 7153–7166. MR 4155203, DOI 10.1090/tran/8123
- Alexander Lytchak and Stefan Wenger, Regularity of harmonic discs in spaces with quadratic isoperimetric inequality, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 98, 19. MR 3528439, DOI 10.1007/s00526-016-1044-1
- Alexander Lytchak and Stefan Wenger, Area minimizing discs in metric spaces, Arch. Ration. Mech. Anal. 223 (2017), no. 3, 1123–1182. MR 3594354, DOI 10.1007/s00205-016-1054-3
- Alexander Lytchak and Stefan Wenger, Energy and area minimizers in metric spaces, Adv. Calc. Var. 10 (2017), no. 4, 407–421. MR 3707085, DOI 10.1515/acv-2015-0027
- Alexander Lytchak and Stefan Wenger, Intrinsic structure of minimal discs in metric spaces, Geom. Topol. 22 (2018), no. 1, 591–644. MR 3720351, DOI 10.2140/gt.2018.22.591
- Alexander Lytchak and Stefan Wenger, Isoperimetric characterization of upper curvature bounds, Acta Math. 221 (2018), no. 1, 159–202. MR 3877021, DOI 10.4310/ACTA.2018.v221.n1.a5
- Alexander Lytchak and Stefan Wenger, Canonical parameterizations of metric disks, Duke Math. J. 169 (2020), no. 4, 761–797. MR 4073230, DOI 10.1215/00127094-2019-0065
- Alexander Lytchak, Stefan Wenger, and Robert Young, Dehn functions and Hölder extensions in asymptotic cones, J. Reine Angew. Math. 763 (2020), 79–109. MR 4104279, DOI 10.1515/crelle-2018-0041
- Chikako Mese and Patrick R. Zulkowski, The Plateau problem in Alexandrov spaces, J. Differential Geom. 85 (2010), no. 2, 315–356. MR 2732979
- Charles B. Morrey Jr., The problem of Plateau on a Riemannian manifold, Ann. of Math. (2) 49 (1948), 807–851. MR 27137, DOI 10.2307/1969401
- James R. Munkres, Elementary differential topology, Revised edition, Annals of Mathematics Studies, No. 54, Princeton University Press, Princeton, N.J., 1966. Lectures given at Massachusetts Institute of Technology, Fall, 1961. MR 0198479
- I. G. Nikolaev, Solution of the Plateau problem in spaces of curvature at most $K$, Sibirsk. Mat. Zh. 20 (1979), no. 2, 345–353, 459 (Russian). MR 530499
- Patrick Overath and Heiko von der Mosel, Plateau’s problem in Finsler 3-space, Manuscripta Math. 143 (2014), no. 3-4, 273–316. MR 3167617, DOI 10.1007/s00229-013-0626-x
- Tibor Radó, On Plateau’s problem, Ann. of Math. (2) 31 (1930), no. 3, 457–469. MR 1502955, DOI 10.2307/1968237
- Yu. G. Reshetnyak, Sobolev classes of functions with values in a metric space, Sibirsk. Mat. Zh. 38 (1997), no. 3, 657–675, iii–iv (Russian, with Russian summary); English transl., Siberian Math. J. 38 (1997), no. 3, 567–583. MR 1457485, DOI 10.1007/BF02683844
- Yu. G. Reshetnyak, On the theory of Sobolev classes of functions with values in a metric space, Sibirsk. Mat. Zh. 47 (2006), no. 1, 146–168 (Russian, with Russian summary); English transl., Siberian Math. J. 47 (2006), no. 1, 117–134. MR 2215302, DOI 10.1007/s11202-006-0013-x
- J. Sacks and K. Uhlenbeck, Minimal immersions of closed Riemann surfaces, Trans. Amer. Math. Soc. 271 (1982), no. 2, 639–652. MR 654854, DOI 10.1090/S0002-9947-1982-0654854-8
- R. Schoen and Shing Tung Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. (2) 110 (1979), no. 1, 127–142. MR 541332, DOI 10.2307/1971247
- Max Shiffman, The Plateau problem for minimal surfaces of arbitrary topological structure, Amer. J. Math. 61 (1939), 853–882. MR 468, DOI 10.2307/2371631
- Friedrich Tomi and Anthony J. Tromba, Existence theorems for minimal surfaces of nonzero genus spanning a contour, Mem. Amer. Math. Soc. 71 (1988), no. 382, iv+83. MR 920962, DOI 10.1090/memo/0382
- Brian White, Infima of energy functionals in homotopy classes of mappings, J. Differential Geom. 23 (1986), no. 2, 127–142. MR 845702
- Brian White, Homotopy classes in Sobolev spaces and the existence of energy minimizing maps, Acta Math. 160 (1988), no. 1-2, 1–17. MR 926523, DOI 10.1007/BF02392271
Additional Information
- Elefterios Soultanis
- Affiliation: IMAPP, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
- MR Author ID: 989349
- ORCID: 0000-0001-9514-3941
- Email: elefterios.soultanis@gmail.com
- Stefan Wenger
- Affiliation: Department of Mathematics, University of Fribourg, Chemin du Musée 23, 1700 Fribourg, Switzerland
- MR Author ID: 764752
- ORCID: 0000-0003-3645-105X
- Email: stefan.wenger@unifr.ch
- Received by editor(s): January 12, 2021
- Received by editor(s) in revised form: June 15, 2021, and October 14, 2021
- Published electronically: April 21, 2022
- Additional Notes: The research was supported by Swiss National Science Foundation Grants 165848 and 182423
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 4711-4739
- MSC (2020): Primary 49Q05; Secondary 53A10, 53C23
- DOI: https://doi.org/10.1090/tran/8580
- MathSciNet review: 4439489