The local dimension of a finite group over a number field
HTML articles powered by AMS MathViewer
- by Joachim König and Danny Neftin PDF
- Trans. Amer. Math. Soc. 375 (2022), 4783-4808 Request permission
Abstract:
Let $G$ be a finite group and $K$ a number field. We construct a $G$-extension $E/F$, with $F$ of transcendence degree $2$ over $K$, that specializes to all $G$-extensions of $K_\mathfrak {p}$, where $\mathfrak {p}$ runs over all but finitely many primes of $K$. If furthermore $G$ has a generic extension over $K$, we show that the extension $E/F$ has the so-called Hilbert–Grunwald property. These results are compared to the notion of essential dimension of $G$ over $K$, and its arithmetic analogue.References
- Asher Auel, Eric Brussel, Skip Garibaldi, and Uzi Vishne, Open problems on central simple algebras, Transform. Groups 16 (2011), no. 1, 219–264. MR 2785502, DOI 10.1007/s00031-011-9119-8
- Sybilla Beckmann, On extensions of number fields obtained by specializing branched coverings, J. Reine Angew. Math. 419 (1991), 27–53. MR 1116916, DOI 10.1515/crll.1991.419.27
- Yuri Bilu and Alexander Borichev, Remarks on Eisenstein, J. Aust. Math. Soc. 94 (2013), no. 2, 158–180. MR 3109740, DOI 10.1017/S144678871300013X
- J. Buhler and Z. Reichstein, On the essential dimension of a finite group, Compositio Math. 106 (1997), no. 2, 159–179. MR 1457337, DOI 10.1023/A:1000144403695
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Jean-Louis Colliot-Thélène, Points rationnels sur les fibrations, Higher dimensional varieties and rational points (Budapest, 2001) Bolyai Soc. Math. Stud., vol. 12, Springer, Berlin, 2003, pp. 171–221 (French). MR 2011747, DOI 10.1007/978-3-662-05123-8_{7}
- Jean-Louis Colliot-Thélène, Rational connectedness and Galois covers of the projective line, Ann. of Math. (2) 151 (2000), no. 1, 359–373. MR 1745009, DOI 10.2307/121121
- Jean-Louis Colliot-Thélène, Variétés presque rationnelles, leurs points rationnels et leurs dégénérescences, Arithmetic geometry, Lecture Notes in Math., vol. 2009, Springer, Berlin, 2011, pp. 1–44 (French). MR 2757627, DOI 10.1007/978-3-642-15945-9_{1}
- Pierre Dèbes, Galois covers with prescribed fibers: the Beckmann-Black problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 2, 273–286. MR 1736229
- Pierre Dèbes, Groups with no parametric Galois realizations, Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), no. 1, 143–179 (English, with English and French summaries). MR 3764040, DOI 10.24033/asens.2353
- Pierre Dèbes and Nour Ghazi, Galois covers and the Hilbert-Grunwald property, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 3, 989–1013 (English, with English and French summaries). MR 3013814, DOI 10.5802/aif.2714
- Pierre Dèbes, Joachim König, François Legrand, and Danny Neftin, Rational pullbacks of Galois covers, Math. Z. 299 (2021), no. 3-4, 1507–1531. MR 4329257, DOI 10.1007/s00209-021-02703-z
- Pierre Dèbes, Joachim König, François Legrand, and Danny Neftin, On parametric and generic polynomials with one parameter, J. Pure Appl. Algebra 225 (2021), no. 10, Paper No. 106717, 18. MR 4223360, DOI 10.1016/j.jpaa.2021.106717
- Pierre Dèbes and François Legrand, Twisted covers and specializations, Galois-Teichmüller theory and arithmetic geometry, Adv. Stud. Pure Math., vol. 63, Math. Soc. Japan, Tokyo, 2012, pp. 141–162. MR 3051242, DOI 10.2969/aspm/06310141
- Cyril Demarche, Giancarlo Lucchini Arteche, and Danny Neftin, The Grunwald problem and approximation properties for homogeneous spaces, Ann. Inst. Fourier (Grenoble) 67 (2017), no. 3, 1009–1033 (English, with English and French summaries). MR 3668767, DOI 10.5802/aif.3104
- B. Dwork and P. Robba, On natural radii of $p$-adic convergence, Trans. Amer. Math. Soc. 256 (1979), 199–213. MR 546915, DOI 10.1090/S0002-9947-1979-0546915-9
- Ido Efrat, Valuations, orderings, and Milnor $K$-theory, Mathematical Surveys and Monographs, vol. 124, American Mathematical Society, Providence, RI, 2006. MR 2215492, DOI 10.1090/surv/124
- Michael D. Fried and Moshe Jarden, Field arithmetic, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 11, Springer-Verlag, Berlin, 2008. Revised by Jarden. MR 2445111
- David Harari, Quelques propriétés d’approximation reliées à la cohomologie galoisienne d’un groupe algébrique fini, Bull. Soc. Math. France 135 (2007), no. 4, 549–564 (French, with English and French summaries). MR 2439198, DOI 10.24033/bsmf.2545
- Yonatan Harpaz and Olivier Wittenberg, Zéro-cycles sur les espaces homogènes et problème de Galois inverse, J. Amer. Math. Soc. 33 (2020), no. 3, 775–805 (French). MR 4127903, DOI 10.1090/jams/943
- Christian U. Jensen, Arne Ledet, and Noriko Yui, Generic polynomials, Mathematical Sciences Research Institute Publications, vol. 45, Cambridge University Press, Cambridge, 2002. Constructive aspects of the inverse Galois problem. MR 1969648
- Joachim König, The Grunwald problem and specialization of families of regular Galois extensions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 21 (2020), 1531–1552. MR 4288640, DOI 10.2422/2036-2145.201801_{0}07
- J. König and D. Neftin, The Hilbert-Grunwald specialization property over number fields, Preprint. arXiv:2112.15467 (2021).
- Joachim König and François Legrand, Non-parametric sets of regular realizations over number fields, J. Algebra 497 (2018), 302–336. MR 3743183, DOI 10.1016/j.jalgebra.2017.11.023
- Joachim König and François Legrand, Density results for specialization sets of Galois covers, J. Inst. Math. Jussieu 20 (2021), no. 5, 1455–1496. MR 4311560, DOI 10.1017/S1474748019000537
- Joachim König, François Legrand, and Danny Neftin, On the local behavior of specializations of function field extensions, Int. Math. Res. Not. IMRN 9 (2019), 2951–2980. MR 3947643, DOI 10.1093/imrn/rny016
- François Legrand, Specialization results and ramification conditions, Israel J. Math. 214 (2016), no. 2, 621–650. MR 3544696, DOI 10.1007/s11856-016-1349-y
- Giancarlo Lucchini Arteche, The unramified Brauer group of homogeneous spaces with finite stabilizer, Trans. Amer. Math. Soc. 372 (2019), no. 8, 5393–5408. MR 4014281, DOI 10.1090/tran/7796
- Gunter Malle and B. Heinrich Matzat, Inverse Galois theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1999. MR 1711577, DOI 10.1007/978-3-662-12123-8
- Dominique Martinais and Leila Schneps, A complete parametrization of cyclic field extensions of $2$-power degree, Manuscripta Math. 80 (1993), no. 2, 181–197. MR 1233480, DOI 10.1007/BF03026545
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2000. MR 1737196
- Catherine O’Neil, Sampling spaces and arithmetic dimension, Number theory, analysis and geometry, Springer, New York, 2012, pp. 499–518. MR 2867931, DOI 10.1007/978-1-4614-1260-1_{2}3
- David J. Saltman, Generic Galois extensions and problems in field theory, Adv. in Math. 43 (1982), no. 3, 250–283. MR 648801, DOI 10.1016/0001-8708(82)90036-6
- Olivier Wittenberg, Rational points and zero-cycles on rationally connected varieties over number fields, Algebraic geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., vol. 97, Amer. Math. Soc., Providence, RI, 2018, pp. 597–635. MR 3821185, DOI 10.1017/langcog.2017.28
- Umberto Zannier, Good reduction of certain covers $\mathbf P^1\to \mathbf P^1$, Israel J. Math. 124 (2001), 93–114. MR 1856506, DOI 10.1007/BF02772609
Additional Information
- Joachim König
- Affiliation: Department of Mathematics Education, Korea National University of Education, Cheongju, South Korea
- ORCID: 0000-0003-0008-3283
- Danny Neftin
- Affiliation: Department of Mathematics, Technion - IIT, Haifa, Israel
- ORCID: 0000-0003-4731-8422
- Received by editor(s): August 8, 2020
- Received by editor(s) in revised form: July 27, 2021, and November 14, 2021
- Published electronically: April 21, 2022
- Additional Notes: The first and second author were supported by the National Research Foundation of Korea (grant no. 2019 R1C1C1002665) and the Israel Science Foundation (grants no. 577/15 and 353/21), respectively
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 4783-4808
- MSC (2020): Primary 11R32; Secondary 14H30, 14G05, 11S20
- DOI: https://doi.org/10.1090/tran/8626
- MathSciNet review: 4439491