Periodic points of polynomials over finite fields
HTML articles powered by AMS MathViewer
- by Derek Garton PDF
- Trans. Amer. Math. Soc. 375 (2022), 4849-4871 Request permission
Abstract:
Fix an odd prime $p$. If $r$ is a positive integer and $f$ is a polynomial with coefficients in $\mathbb {F}_{p^r}$, let $P_{p,r}(f)$ be the proportion of $\mathbb {P}^1\left (\mathbb {F}_{p^r}\right )$ that is periodic with respect to $f$. We show that as $r$ increases, the expected value of $P_{p,r}(f)$, as $f$ ranges over quadratic polynomials, is less than $22/\left (\log {\log {p^r}}\right )$. This result follows from a uniformity theorem on specializations of dynamical systems of rational functions over residually finite Dedekind domains. The specialization theorem generalizes previous work by Juul et al. that holds for rings of integers of number fields. Moreover, under stronger hypotheses, we effectivize this uniformity theorem by using the machinery of heights over general global fields; this version of the theorem generalizes previous work of Juul on polynomial dynamical systems over rings of integers of number fields. From these theorems we derive effective bounds on image sizes and periodic point proportions of families of rational functions over finite fields.References
- Emil Artin and George Whaples, Axiomatic characterization of fields by the product formula for valuations, Bull. Amer. Math. Soc. 51 (1945), 469–492. MR 13145, DOI 10.1090/S0002-9904-1945-08383-9
- Enrico Bombieri and Walter Gubler, Heights in Diophantine geometry, New Mathematical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006. MR 2216774, DOI 10.1017/CBO9780511542879
- Andrew Bridy and Derek Garton, Dynamically distinguishing polynomials, Res. Math. Sci. 4 (2017), Paper No. 13, 17. MR 3669394, DOI 10.1186/s40687-017-0103-3
- Andrew Bridy and Derek Garton, The cycle structure of unicritical polynomials, Int. Math. Res. Not. IMRN 23 (2020), 9120–9147. MR 4182792, DOI 10.1093/imrn/rny232
- Elisa Bellah, Derek Garton, Erin Tannenbaum, and Noah Walton, A probabilistic heuristic for counting components of functional graphs of polynomials over finite fields, Involve 11 (2018), no. 1, 169–179. MR 3681355, DOI 10.2140/involve.2018.11.169
- Robert Benedetto, Patrick Ingram, Rafe Jones, Michelle Manes, Joseph H. Silverman, and Thomas J. Tucker, Current trends and open problems in arithmetic dynamics, Bull. Amer. Math. Soc. (N.S.) 56 (2019), no. 4, 611–685. MR 4007163, DOI 10.1090/bull/1665
- Ryan Flynn and Derek Garton, Graph components and dynamics over finite fields, Int. J. Number Theory 10 (2014), no. 3, 779–792. MR 3190008, DOI 10.1142/S1793042113501224
- Michael D. Fried and Moshe Jarden, Field arithmetic, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 11, Springer-Verlag, Berlin, 2008. Revised by Jarden. MR 2445111
- Philippe Flajolet and Andrew M. Odlyzko, Random mapping statistics, Advances in cryptology—EUROCRYPT ’89 (Houthalen, 1989) Lecture Notes in Comput. Sci., vol. 434, Springer, Berlin, 1990, pp. 329–354. MR 1083961, DOI 10.1007/3-540-46885-4_{3}4
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. MR 217086
- Ulrich Görtz and Torsten Wedhorn, Algebraic geometry I, Advanced Lectures in Mathematics, Vieweg + Teubner, Wiesbaden, 2010. Schemes with examples and exercises. MR 2675155, DOI 10.1007/978-3-8348-9722-0
- Jamie Juul, Pär Kurlberg, Kalyani Madhu, and Tom J. Tucker, Wreath products and proportions of periodic points, Int. Math. Res. Not. IMRN 13 (2016), 3944–3969. MR 3544625, DOI 10.1093/imrn/rnv273
- Jamie Juul, Fixed point proportions for Galois groups of non-geometric iterated extensions, Acta Arith. 183 (2018), no. 4, 301–315. MR 3820058, DOI 10.4064/aa8535-2-2018
- Jamie Juul, The image size of iterated rational maps over finite fields, Int. Math. Res. Not. IMRN 5 (2021), 3362–3388. MR 4227574, DOI 10.1093/imrn/rnz217
- Sergei V. Konyagin, Florian Luca, Bernard Mans, Luke Mathieson, Min Sha, and Igor E. Shparlinski, Functional graphs of polynomials over finite fields, J. Combin. Theory Ser. B 116 (2016), 87–122. MR 3425238, DOI 10.1016/j.jctb.2015.07.003
- Serge Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723, DOI 10.1007/978-1-4612-0853-2
- Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556, DOI 10.1007/978-1-4613-0041-0
- R. W. K. Odoni, The Galois theory of iterates and composites of polynomials, Proc. London Math. Soc. (3) 51 (1985), no. 3, 385–414. MR 805714, DOI 10.1112/plms/s3-51.3.385
- Alexander Ostrowski, Über einige Lösungen der Funktionalgleichung $\psi (x)\cdot \psi (x)=\psi (xy)$, Acta Math. 41 (1916), no. 1, 271–284 (German). MR 1555153, DOI 10.1007/BF02422947
- J. M. Pollard, A Monte Carlo method for factorization, Nordisk Tidskr. Informationsbehandling (BIT) 15 (1975), no. 3, 331–334. MR 392798, DOI 10.1007/bf01933667
- Joseph H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007. MR 2316407, DOI 10.1007/978-0-387-69904-2
Additional Information
- Derek Garton
- Affiliation: Fariborz Maseeh Department of Mathematics and Statistics, Portland State University, Portland, Oregon
- MR Author ID: 1024781
- Email: gartondw@pdx.edu
- Received by editor(s): May 18, 2021
- Received by editor(s) in revised form: December 8, 2021
- Published electronically: April 21, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 4849-4871
- MSC (2020): Primary 37P05; Secondary 37P25, 37P35, 11T06, 13B05
- DOI: https://doi.org/10.1090/tran/8634
- MathSciNet review: 4439493