## An elastic flow for nonlinear spline interpolations in $\mathbb {R}^n$

HTML articles powered by AMS MathViewer

- by Chun-Chi Lin, Hartmut R. Schwetlick and Dung The Tran PDF
- Trans. Amer. Math. Soc.
**375**(2022), 4893-4942 Request permission

## Abstract:

In this paper we use the method of geometric flow on the problem of nonlinear spline interpolations for non-closed curves in $n$-dimensional Euclidean spaces. The method applies theory of fourth-order parabolic PDEs to each piece of the curve between two successive knot points at which certain dynamic boundary conditions are imposed. We show the existence of global solutions of the elastic flow in suitable Hölder spaces. In the asymptotic limit, as time approaches infinity, solutions subconverge to a stationary solution of the problem. The method of geometric flows provides a new approach for the problem of nonlinear spline interpolations.## References

- Robert A. Adams and John J. F. Fournier,
*Sobolev spaces*, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. MR**2424078** - John W. Barrett, Harald Garcke, and Robert Nürnberg,
*Elastic flow with junctions: variational approximation and applications to nonlinear splines*, Math. Models Methods Appl. Sci.**22**(2012), no. 11, 1250037, 57. MR**2974175**, DOI 10.1142/S0218202512500376 - Albert Borbély and Michael J. Johnson,
*Elastic splines I: existence*, Constr. Approx.**40**(2014), no. 2, 189–218. MR**3254617**, DOI 10.1007/s00365-014-9244-4 - Anna Dall’Acqua, Chun-Chi Lin, and Paola Pozzi,
*Evolution of open elastic curves in $\Bbb {R}^n$ subject to fixed length and natural boundary conditions*, Analysis (Berlin)**34**(2014), no. 2, 209–222. MR**3213535**, DOI 10.1515/anly-2014-1249 - Anna Dall’Acqua, Chun-Chi Lin, and Paola Pozzi,
*Elastic flow of networks: long-time existence result*, Geom. Flows**4**(2019), no. 1, 83–136. MR**4048466**, DOI 10.1515/geofl-2019-0005 - Anna Dall’Acqua, Chun-Chi Lin, and Paola Pozzi,
*Elastic flow of networks: short-time existence result*, J. Evol. Equ.**21**(2021), no. 2, 1299–1344. MR**4278396**, DOI 10.1007/s00028-020-00626-6 - A. Dall’Acqua, C.-C. Lin, and P. Pozzi,
*Argument for the extension of the special geometric solution (SGS)*, Preprint, 2021. - A. Dall’Acqua and A. Spener,
*The elastic flow of curves in the hyperbolic plane*, Preprint, arXiv:1710.09600, 2017. - Dennis M. DeTurck,
*Deforming metrics in the direction of their Ricci tensors*, J. Differential Geom.**18**(1983), no. 1, 157–162. MR**697987** - Gerhard Dziuk, Ernst Kuwert, and Reiner Schätzle,
*Evolution of elastic curves in $\Bbb R^n$: existence and computation*, SIAM J. Math. Anal.**33**(2002), no. 5, 1228–1245. MR**1897710**, DOI 10.1137/S0036141001383709 - Mariano Giaquinta, Giuseppe Modica, and Jiří Souček,
*Cartesian currents in the calculus of variations. I*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 37, Springer-Verlag, Berlin, 1998. Cartesian currents. MR**1645086**, DOI 10.1007/978-3-662-06218-0 - M. Gösswein, J. Menzel, and A. Pluda,
*Existence and uniqueness of the motion by curvature of regular networks*, Preprint, arXiv:2003.09962, 2020. - Michael Golomb and Joseph Jerome,
*Equilibria of the curvature functional and manifolds of nonlinear interpolating spline curves*, SIAM J. Math. Anal.**13**(1982), no. 3, 421–458. MR**653466**, DOI 10.1137/0513031 - Joseph W. Jerome,
*Smooth interpolating curves of prescribed length and minimum curvature*, Proc. Amer. Math. Soc.**51**(1975), 62–66. MR**380551**, DOI 10.1090/S0002-9939-1975-0380551-4 - Emery D. Jou and Weimin Han,
*Minimal-energy splines. I. Plane curves with angle constraints*, Math. Methods Appl. Sci.**13**(1990), no. 4, 351–372. MR**1074096**, DOI 10.1002/mma.1670130407 - Michael J. Johnson and Hakim S. Johnson,
*A constructive framework for minimal energy planar curves*, Appl. Math. Comput.**276**(2016), 172–181. MR**3452007**, DOI 10.1016/j.amc.2015.11.047 - Richard S. Hamilton,
*Three-manifolds with positive Ricci curvature*, J. Differential Geometry**17**(1982), no. 2, 255–306. MR**664497** - Gerhard Huisken and Alexander Polden,
*Geometric evolution equations for hypersurfaces*, Calculus of variations and geometric evolution problems (Cetraro, 1996) Lecture Notes in Math., vol. 1713, Springer, Berlin, 1999, pp. 45–84. MR**1731639**, DOI 10.1007/BFb0092669 - Joel Langer and David A. Singer,
*Lagrangian aspects of the Kirchhoff elastic rod*, SIAM Rev.**38**(1996), no. 4, 605–618. MR**1420839**, DOI 10.1137/S0036144593253290 - E. H. Lee and G. E. Forsythe,
*Variational study of nonlinear spline curves*, SIAM Rev.**15**(1973), 120–133. MR**331716**, DOI 10.1137/1015004 - Chun-Chi Lin, Yang-Kai Lue, and Hartmut R. Schwetlick,
*The second-order $L^2$-flow of inextensible elastic curves with hinged ends in the plane*, J. Elasticity**119**(2015), no. 1-2, 263–291. MR**3326192**, DOI 10.1007/s10659-015-9518-5 - Chun-Chi Lin,
*$L^2$-flow of elastic curves with clamped boundary conditions*, J. Differential Equations**252**(2012), no. 12, 6414–6428. MR**2911840**, DOI 10.1016/j.jde.2012.03.010 - John Milnor,
*On total curvatures of closed space curves*, Math. Scand.**1**(1953), 289–296. MR**59030**, DOI 10.7146/math.scand.a-10387 - M. Moll and L. E. Kavraki,
*Path planning for variable resolution minimal-energy curves of constant length*, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, pp. 2142–2147. - A. Polden,
*Curves and surfaces of least total curvature and fourth-order flows*, Ph.D. Dissertation, Universität Tübingen, Tübingen, Germany, 1996. - O. A. Ladyženskaja (ed.),
*Proceedings of the Steklov Institute of Mathematics. No. 83 (1965): Boundary value problems of mathematical physics. III*, American Mathematical Society, Providence, R.I., 1967. Translated from the Russian by A. Jablonskiĭ. MR**0211084** - Michael E. Taylor,
*Partial differential equations I. Basic theory*, 2nd ed., Applied Mathematical Sciences, vol. 115, Springer, New York, 2011. MR**2744150**, DOI 10.1007/978-1-4419-7055-8

## Additional Information

**Chun-Chi Lin**- Affiliation: Department of Mathematics, National Taiwan Normal University, Taipei 116, Taiwan
- MR Author ID: 632143
- ORCID: 0000-0001-5682-0698
- Email: chunlin@math.ntnu.edu.tw
**Hartmut R. Schwetlick**- Affiliation: Department of Mathematical Sciences, University of Bath, United Kingdom
- MR Author ID: 668083
- Email: h.schwetlick@bath.ac.uk
**Dung The Tran**- Affiliation: Department of Mathematics, National Taiwan Normal University, Taipei 116, Taiwan
- Email: tranthedung56@gmail.com
- Received by editor(s): September 9, 2012
- Received by editor(s) in revised form: December 18, 2021
- Published electronically: May 4, 2022
- Additional Notes: This work was partially supported by the research grant of the National Science Council of Taiwan (NSC-100-2115-M-003-003), the National Center for Theoretical Sciences at Taipei, and the Max-Planck-Institut für Mathematik in den Naturwissenschaften in Leipzig. The third author received financial support from Taiwan MoST 108-2115-M-003-003-MY2.
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**375**(2022), 4893-4942 - MSC (2020): Primary 35K55; Secondary 41A15
- DOI: https://doi.org/10.1090/tran/8639
- MathSciNet review: 4439495